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Preface 

Lie series are special series containing differential operators. 

Name and concept ot these.series are due to W.Groebner, Institute 

for Mathematics, Innsbruck University. These series were inven- 

ted by Groebner to solve special problems in algebraic geometry. 

However it was found that these series, named by Groebner after 

S.Lie, were very useful to solve differential equations. My 

friend Groebner offered this new tool to theoretical physics. 

The usefullness of the new method was shown in several papers 

by W.Groebner and F.Cap. In celestial mechanics the new method 

could compete with other modern methods. So H.Knapp, Innsbruck, 

calculated the orbit of the eight satellite of Jupiter using a 

special version of the new method and J.Kovglevsky in Paris 

calculated the same problem using Cowells method. The two re,- 

suits showed excellent agreement. 

In the US Dr.tiilson from the Applied Mathematics Section of NASA 

recognized first the advantages of the new method. Thanks to his 

understanding and interest NASA offered a research grant for 

further investigations on the new method. The results of the 

investigations are presented in this monograph. The authors 

would like to express their deep gratitude to NASA and to 

Dr.rSilson - without their help and encouragement this book would 

never have been written. 

Innsbruck (Austria) 

the University 

June 1966 

Ferdinand Cap 
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Chapter-I 

Introduction, by F.CAP 

In the. last few yeare,.Lie series have proved to be an useful tool 

for solving differential equations. Based on the work of W.GRsEBRER, 

/l/, Department of Mathematics at the Universitiy of Innsbruck, a 

lot of further theoretical development and physical applications 

has been published /z-16/. 

A series of the following kind: 

$ D?f(z) = f(z) + tDf(z) + $+ + . . . . . . 
LB=0 

(Ial) 

is here called Lie series; f(z) is any function which depends on the 

complex variables z,, z2, . . . . . . z n and is holomorphic in the neighbor- 

hood of the point zo. D is a linear differential operator., defined by: 

D'= 6,(z) $-+ 62w*+ . . . . . 
1 2 

+ qzg- 
n 

(I#21 

the coefficients a,(z) represent functions of the complex variables 

Z,’ 2.2’ l *-*, zn, which are all assumed to be holomorphio in the 

neighborhood of the point zO. 

The convergence of the Lie series (1,l) was proved by GROEBNER /l/, 

using the method of CAIJCEIYIS majorants. 

The following theorem.holds: 

The Lie seriea (I;'?) converges absolutely at every point of the z- 

space, rhO.@ the operator D, i.e. all-functione 6,(z) a8 well as 

the function f(z) are holomorphic; in every such point in the z- 

space a positive number T can be given in such a manner that the Lie 

series converges absolutely at least for It\< T. 



The series (1,l) can be used to solve differential equations. We 

consider an ordinary differential equation of the order n which 

is given by: 

z(“)(t) = 6 (t,Z,Z’,Z”, . . . . . . . . z-)) 

Eq.(I,3) ~anibe'.wr~~ten'.~n;.he.%orm:: 

Z’, = 6, (t 9 z, , ‘zp . . . . . 'n) 

Z'2 = qt, Z,' Z2' . . . . . 'n) 

"n = qt, z,, z*, l *.-, zn> 

Assuming the functions bi (i = 1, 2, . . . . n) to be analytic the 

equation holds /l/: 

qt, z, t Z.2' . . . . . . zn> = 

= r $ Dk(t . . . . . 
y=o * 0 9 "1' “2’ 'n) 

i = 1, 2, . . . . n 

and 

a0 
Zli = & zi(t) = & 1 y =o 

5 DYzi = 

Qo 
td - to = 

Ix v! DO+',. = 1 y=o L 7 DvDzi = 
y=o . 

00 
= t ~ DJ'i(to, Z, I ‘2’ . ..i. 

v=o . ‘n) 

( 1= 1, 2, . . . . n 

(183) 

(1~4) 

(1~5) 

(1~6) 

2 



where t o, 2,' 75’ -.-, zn indicate that after applying the operator D 

U-times, t, Z, , Z2, Z3., . . . . , Z, have to be replaced by the initial 

values to, z,, z2, . . . . . 2 . n 

Eqs. (I,5) and (1,6) show that the Lie series zi(t)= r $ Duei 
y=o - 

solve Eq.(I,4) and Eq.(I,3) respectively. 

Lie Series are not only suitable to solve initial value problems 

/2,3/, but also to solve boundary value problems /4,5/. 

Irrespective of their theoretical significance, Lie series are 

interesting from a numerical point of view /5, 6, 71. Thus, e.g. 

F.CAP and J.MENNIG /7/ and F.CAP and A.SCHETT /5/ have applied Lie 

series to reactor theory. iKhile F.CAP and J.MENNIG were concerned 

with shielding theory i.e. treated an initial value problem, F.CAP 

and A.SCHETT's work is a boundary value problem as it comprises 

aspects of shielding and reactor core. Mathematically speaking, the 

modified Bessel functions and its derivatives which appear in the 

conventional calculations assume so large values, with increasing 

distance from the core that overflow of the computer may occur. In 

contrast to this Lie series are -appropriate to this problem as they 

are broken off if the values become too large and expanded anew. 

Furthermore, this stepwise method is favorable insofar as the reactor 

itself consists of coaxial zones which are appropriately treated by 

such repeated expansions of Lie series. 

In this monograph, (chapter 11,111) we investigate the general linear 

homogeneous second order differential equation which is the most ge- 

neral type of equations containing all 33 equations resulting from 

a separation of the Helmholtz equation in 11 coordinate systems. we 

succeeded in developing two alternative forms of solutions, one of 

them still containing the D-operators, the other one splitting.off 
- 

3 - 



known functions from the total solutions and determining the re- 

' maining part by means of recurrence formulas and integral represention 

respectively. 

In chapter IV, applications to various spezific cases of the differen- 

tial equations resulting from the separation of the Helmholtz are 

considered. 

In chapter V, the general investigations of Chapter II and III are 

applied to some physical problems. 

Theoretical and numerical investigations on Mathieu functions are 

presented in chapter VI. 

In chapter VII Webers function of the parabolic cylinder are treated. 

It should be mentioned, that GROEBNER and collaborators used Lie series 

to solve partial differential equations. So the'cauchy Problem of 

linear nonhomogeneous partial differential equations of any arbitrary 

order with non constant coefficients and of a system of simultaneous 

partial linear differential equations of first order waq solved. Also 

boundary value problems of ordinary differential equations have been 

solved and methods to improve the numerical convergence of the Lie 

solutions were found. 

4 



I 

Chapter II 

The Solution of the General Homogeneous Linear 

Differential .Equation of Second Order. 

1) Solution by Recurrence Formulas by A.SCHm and J.wBIL. 

Ve treat the equation: 

z"(t) - f,(t)zw - f2(t)Z(t) = 0 (II,1 > 

This equation represents the most general type of the equations resulting 

from a separation of the Helmholtz equation: 

4bpla#= 0 (1112) 

This equation is known to be separable in 11 coordinate systems /17/. 

Equation (11,l) may be replaced by the following system of first order 

equations: 

Z’ = Zi = Z2 

Z” =Z$=fZ 
1 2 + f2Zl 

This system is solved formally by /l/ 

z(t) = t 
I? 
z D'z, 

v=o 

D beeing a differential operator which is given by: 

D=&+z -x + (f1z2 + f2Z,)2+ 
0 2 bz, 2 

in our case /I/. 

Evidently, 

(II,31 

(II ~4) 

(II,5) 

D'z, = z, (11 ,a) 

’ 5 



a& applying the operator, respectively, once and twice, we obtain: 

D'z, = z2 (11~7) 

D's, = fizz + f2zl Ulp 

As we are allowed to split up the operator powers /,/, the following 

identities hold: 

(D'z,) I D"-2 (f,z2 + f2z,) ; U = 2,3, .-0. (11,s) 

D*z, = D+' (D z,) = DV-'z2 (II ,101 

D”z, = D" (D"z,) = 

Having in mind the formation of a recurrence formula for Dvzl, our 

interest is centered on (II,y), the first term of whith may be repre- 

sented in the form: 
-2 

D"-'(f,z2) = 2 ('i2) D9f1Du-2-9z2 I (".i2) DPf, . D-'-y(D'-'z,), 
y-0 

using a generalization of the Leibniz rule proved in /,/. 

With the help of (II,7) we have 

and, in analogy, 

D"-2(f2z,) = ("p2) Dqf2D=-2-9z, 

From (II,g), (11,ll) and (II,,2) we obtain 

#z, = v (V;2) (Dqf,D+'-fz, + Dqf2D+2-9z1) 

+- =O 
orI in view of 

(II,“) 
(11,121 

Dqf,(z 0 ) = f,(@(z 0 ), 



DUz, = (yi2) (f{"(zo) d-'-Z, + f.$')(zo) D"2'fs,) (11~13) 

which allows all D*z, to be determined by recurrence, as Doe, and 

D'z, may easily be celalated in .a direat way (see (11~6)~ (TI,i)), 

Consequently, the solution of (II,,) reads: z(t) = 0 
)#-wC 

1+ 

+ ,1%o)Dv-2-fz,) + z, + tz2 (11,14J 

This form of solution may be used for the numerical calculation ef Z(t) 

in a computer; nevertheless, we attempt to find an alternative way by 

splitting this form of solution into well-known functions and remaining 

terms for which recurrence formulas will have to be obtained. 

At first, we will show that it is generally poesib to.splitt rin and 

COB or sinh and cash, from the total eolution of Eq.(II,l).. 

According to (II,4), the solution may be written: 

00 
z(t) - 1 $ (D, + D2fz, 

V-0 

For any decomposition of D, we may write /l/: 

+ D2)'z, = u-i 
D1 

D2Di-'P, 
u=o v=o v=o 

In our case, D reads (11,5): 

D= b - + “2 &- + (f,(Zo)Z2 + f2(“o>z,> a+ bZO 1 2 

The operator D, chosen in the following decomposition D = D, + D2 is 

known to generate the trigonometric (hyperbolic) functions when applied 

to z,, /l/: 

7 



The total solution, therefore, is given by: 

z(t) = z,cozh(t v- f2) + .& sinh (x) + -iD2Di-'z, 

If f, I -<+ and f2 - -p2.:;. , i.en(?: and- are purely imaginary, 

oorh end sinh are to be replaced by COB and sin. Q.e.d. 

For the term 

D1 '-I D2Di-'z, 

it will be necessary to obtain recurrence formulas. 

Replacing Di-'zl by (11,13) we get: 

ggc ,;-I D,T (19") (f,(?)zo) Di-'+z, + f2(P)Di-3-Yz,) 

In order to avoid the evaluation of this threefold sum which seems 

to'be rather horrible, we will follow another way of deriving recurrence 

formulaar 

Using (11,g) we obtain; 

D%, = Dy-' (f1z2 + f2z,) u= 2,3, . . . . 

where the first term of the right side may be written as 

Dr-*,(f1z2) =.f,D'-*z2 + *-2 ("g*) ~f,D"-2-pz2 
bT = 

and the second term: 

D"'*(f2z,) - f2DLI-*z, + (" -')I$ f 
? 2 

D" -2-9z 
1 

80 that: 

8’ 



D1 = 22 2, + + fJQ", %$- 
2 . 

D2 =%+ + f,(zo)z2& 
0 2 

In so doing, we calculate the first terma of which 

are: 

D1 2z1 = f2(zo)z, 

Dt 3z7 = f2(“ob2 

= f22(zo)z, 
D,5~, = f22(Zo)Z2 

or, generally: 

D* 1 z1 = f; bob, 

D W+l 
1 5 = f; (Zob2’ 

so that: 

Evidently, these series represent: 

"2 cash (tm + - 
I- f2 

sinh (tE) 

9’ 

I - 



a f,DV-'z2 + f2Dv-22, + 

+ ("i2) Def2DV-2k9z, .= 

- f,D'-'z2 + f2DV'Pzt + Ro I f,D+'z, +. f2DJB2z, + R. 

V-l 
Applying the formula for D'z, to D Z, and DvW2z 1' we obtain: 

D"z, i f,2Dv'3z2 2 v-4 + f2 D z, + R, p f 2Dv-2z 
1 

+ f 2Dv-4z 
1 2 1 + % (11,15) 

where sums.and terms with products of f, and f2 are understood to be 

contained in B,. As we require the exponents of the operator powers 

to be equal in the general recurrence formula, we have to show that 

is generally possible to obtain expressions with equal exponents in 

the powers of D. Applying probedure of (II(g) to the first term of 

-(II,19 and denoting all sums and terms with "mixed" products by R2, 

we obtain: 

tiz, = f,3D+4z2 + f22DV-4z, + R2 

in the same way: 

5 v-6 
D"z, = f, D z2 + 3 v-6 f2 D "1 + R4 

and, generally: 

DcIz, = f, 2k-lD+2kz k v-2k 
2+f2D + R2k-2 

DuttingV3 2A, we obtain with a slight change in the notation of the 

remaining terms: 

D2'z = f 2k-lD2h-2kZ k 2A-2k 
11 2+f2D "1 + S2h 

lo 



II 

which, with A = k, becomes: 

D2'z = 
1 fl 

2A-1 z2 + f2?z, + s2A 

2h = 2, 4, 6, . . . . 

Similarly for odd U= 2A + 1 we obtain: 

D2A+'z 
1 

= f 2Az 
1 2+f 1 

2*-'f2z, + f2hz2 + S2*+, 

(11~16) 

(11~17) 

'flith the help of these results, 

D2Qz, + 
t u= 

the general solution reads: 

8 t2Q 
-p-p (f,2k-'z2 + fpQz, + SPY 

+ f h-1 1 f2zl + f2Uz2 + S2p+l + z1 > + tz2 

(tf,) - 1 - cash (tv2) A 1 - + 1 
(II,18) 

1 
+ "'2 Ty 

sinh (tf,) -tf, - *] + z, ?[sinh (tf,) - tf, - -+$I 

+ sinh (tF2) - tq - y] + z 5 Sq (zo,z,,e2,f,,f2) 
Q' 

+ 2 1 + tz 2 

If f; = - 7; and f2 = - 7, 

cosb (q) - 1 - 2 

11 



,With *he help of (11,%6). (II,l?), (II,!3) the following equation 

.is seen to hold: 

. ZA-1 A 
A-2 

82A + fl 
z2 + f2 z, = 

s 
( 
,272) f,(2Q) D2h--'-24 Z2 + 

P 

A-2 
+ 

> 
( 

(24+1) D2A-3-2~ z2 + 

A-1 
+ 

fA3 f (24) D2A-2-2Q ", + 
2G 2 

+ ( ;;;:I f2 
(24+1) D2A-3-2e z1 

where 
D2h-2-2Qz 

2 
I D2A-1-24, = f 2h-2-2Qz 

11 2 + fl 
2A-3-2ef 2z1 + 

+ 

+ f 2-2ef2z, + f -1-e z 
1 2 2+S 2A-l-24 

D2A-3-~z = D2A-2-245 = f 2h-3-2~~ A-’ ‘Q 
2 1 1 2 + f2 7 + S2A-2-24 

(11,201 

(11,21) ' 

(II ,221 

D2h-3-2e, = f 2A-4-24, + f 2h-5-2Qf2z, + f2A-2-Qz2 + s2A-3-2e (II,23) 
1 1 2 1 

D2A-2-24z = f 2A-3-2ez A-' -Q 

11 2 + f2 =1 + %A-2-24 

with the help of these formulas S2A becomes: 

(II ,241 

'2A = ( 2;p2) f, , w, 2h-2-24Z2 + 

h-1 + 
& ( 21;;) f,(2Q)( 

I 

A-? 
+ 

a;:, f, (24+' 

fl 
2A-3-2~~ z 

21ff2 
A-l-q 

"2 + '2A-1-24 

)(f, 
2h-3-2~ 

z2 + f2 
h-l ‘Q 

z1 + S2A-2-24 

>+ 

,) + 



+ c ( QU 
2;;2) f2 (2e)f2A-1-ez1 + 

-2 
+ 

$a 
( I 
2;i2) f2(2Q) (f12A-3-2Qz2 +. s2*-2-2e) + 

2A-2 
+ 

> 
( 

,';;f) f2(2p+1) (,,2A-4-% + f,2A-5-2ef2z1 + 

+ f A-2-e 
2 '2 + s2h-3-2Q > 

Similarly, we obtain for S2A+,: 

S 2A+., + f12Az2 + f12A-'f2z1 + f2hz2 = 

= e (2;;‘) f1(2Q) ~~h-1-~4,~ + g (;;;:, 
4=0 3 

+ 
where 

( 2A-1 

24 
) f 12U) D2A-‘-2Qz 

2 1+ 

(11~25) 

(11,261 

) D2A-2-2Q 
"1 

D2h-1-25 = D2A-2ez 2A-2Q'l 
2 1 

= 
fl z2 + f2 

A-e, 
1 + s2A-2Q (I? ,271 

while for 

D2A-2-2y, 
2 

u D2h-1-2ez 
1 . . . see (11,21) 

D2h-2-2Qz 
1 . . . see (11,22) 

and 

D2A-1-2yz 
1 

. . . see (11,21) again. 

Consequently, S2A+, is given by: 

13 



S2*+1 = z ( (2elf 2~-%-lz2 + 
4’ 

2;;‘) f, , 

.+ 2 ( 
Q'=o 

y;‘) f1(2Q) (f2A%, + s2A-2e> + 

-1 
+ 

8 
( z;;:) fl 

(2q+l) (f12h-2-2uz2 + fl~~-3-24f2z, + 

4' 

+ f A-'-Q, 
2 

2 + s2A-,-2e) + g 12&‘, f2(2k)f2A-1-Qz2 + 

+ 4g- (7 > f2(2Q) (f12*-2-2ez2 + f,2~-3-2Gf2zl + 
Q’ 

-1 
+s ) + 

z 
2A-1-2~ ,= 

y, f2(2k+‘+f,2J+3-2y,2 + 

+ f A-l-ez 
2 , + s2A-2-24) - f,2A-‘f2z,. (II,=) 

The first three Sb which have to be calculated in a direct way 

are: 

s 
z2 u -- 

0 
fl 

f2 

s’ = - 7 “’ - z2 

s2 = 0 

(11,291 

By means of (II,lS), (11,25), (II,28 ), (11~29) the solution of (II,l) 

may be calculated numerically. 

In conclusion we found two alternative representations of the solution, 

one of them still containing the D-operators and the other one split 

up into trigonometric (hyperbolic) furictions and remaining terms for 

which recurrence formulas could be derived. 

14 



Remark: In the course of our investigations, we attempted to solve 

Eq. (II,,) by using the method of Laplace transformation. But as it 

turned out, this method is not advantageous in our case, according 

to the general theory given in /18/. 

2) 'Solution by Iterative Method, by W.GROmR,. 

GRoRBRRR split the Lie operator D up in the following way: 

D = D, + D2 

where 

a 
D1 = '2 az, - + (f2(zo)z, + f, (zo)Q $- 

2 

the philosophy being his intention to put moat of the operator 

into the main part of the solution and to keep only D2 = + for 
0 

the formation of the remaining terms. 

Using matrix formalism, D, reads: 

D, = (z, 9 z2> = (z, 9 z2> AI 

where: 

A= 

and 

.=(++I’ 1 

(II ,301 

(II,31 > 

(II,32.) 



Cohaequently, 

D,(", , .z2) = b, , z2b7’ (2, # z2> = b, s z2b 

aaV(z, n 2.2) = 1 

Applying D, once more, we obtain; 

D; (2 , ~2,) = (2, ,z2)AV(z, ,z2)A = (5 sz2)A2 

and generally: 

D; (",,z2) = (z1,z2)Av 

The main part of the solution is, therefore, given by: 

(11~33) 

(11~34) 

(11~35) 

(II,%) 

Now we have to calculate lx We assume A to be diagoniztible, i.e., 

equation: 

I AE - Al = 

fl + 
%,2=2 - 

T-b -A = (11,371 

As is well known, A, and A2 are obtained by solving the secular 

= 0 

Supposing A, f A2 , T and T-' can be calculated: 

(II,JO) 

16 



From (11,37), we have 

A = TAT-' 

and 

A' = (Q&l) = (2&T-')(WT-l)........... (W-l 

= my+ 

Xth the help of (11,42), (,11,36) reads: 

(II.41 > 

I= 

(11~42) 

0 

-) 

E 

TT 
5 .f 

UC0 u! 2 

0 

) 
tA2 

TT 
e 

‘Z 
1 0 z2 

Consequently according to /l/ the solutipn may be written: 

This integral can be evaluated by an iteration method, according 

to /l/. The symbol 2 added after the bracket is to indicate that after 

application of the D-operators z 
tD1 

1' z2 
have to be replaced by e tD1 z, 

and e z2, respectively. 

17 



Chapter III 

The Solution of the General Inhomogeneous Linear 

Differential Equation of Second Order by A.SeEXTT and J.BIL. 

1) Solution by IteratM Method. 

The equation in queation reads: 

Y"(t) - f,WW) - fJt)y(t) = f3W (11191) 

where we suppose fi(t) to be regular in the considered domain. 

The following system is equivalent to (III,l) 

Y’ = t.1 = 1 
0 

Y 
= yl 

r; = Y2 

Y; 1 f3 + f2Yl +.f,Y*, 

which is formally solved by /l/: 

y(t) - Jr y=o 
$ DJy. 

In our case, D is given by 

a a -+ (f D = aY, + y2 .ay, 3 + f2Y, + f,Y2> & 
2 

The small letters are to indicate that after application of the 

operator the Y-variables have to be replaced by their initial 

Values. According to GROEBNER /l/, we split the operator in the 

following way: 

(11192) 

(11193) 

(111~4) 

D = D, + D2 (III,5) 

with 

18 



a - + 
Di = y2 ay, 

(f 3 + f2Y, + f,Y2> + 
2 

and 

D2 = + 
0 

(III ,5a) 

(III ,5b) 

whese D, xi.11 produce the main part and D2 the correction terms. 

;n view of that, the total solution reads /I/: 

where the symbol a added after the bracket indicates the fact 

that after application of the D-operator y,, y2 have to be re- 

placed by e tDl y, and d tDl y2, respectively. 

We now turrr to an evaluation of the firm% term at the right aide 

of (III,~): 

f$ Dy( +) = et(y2+ + Cf3 + f2Y’ + flY2) e 

u=o 

(9) . 

D, may be wrjtten in matrix form: 

1 fl 0 a 

ay 

D1 = (Y2’Y4 0 f2 0 a’ = i \(I ay2 

0 f3 ' 0 

= (y2r Y,S 1)AV 

where 

(111~7) 

(111,e) 
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and 
a .T 

qp 0 

Applying the operator to the variable, we obtain: 

D,(Y~,Y,J) - (Y~sY,J > AV (y2,y,9') = (Y2'y," ) B 

where 

B - AV (y2,Y,J). 

(III,V) 
(111,lO) 

Repeating this operation, we get: 

D:(.Y~'YID~ > = (Y~,Y,J)AP(Y~sY,J)B = (Y~Y,J)B~ (111,lOa) 

and 

D3y2,yl,l) = (Y~,Y,,~)AY(Y>sY,J)B~ = (Y~sY,J)B~ (III,lOb] 

and generally: 

$(Y~,Y,J) = Bn. (111,lOc) 

For the homogeneous case, a repeated application of D 
1 

results 

in multiplying the expression by the coefficient matrix A itself, 

a &e played by the more complicated matrix B, in our case. 

The main part of the solution is, therefore, given by: 

using (AB)T = BTAT. 

(111,ll) 

NOW we have to calculate Bn: 
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B = AV(Y,,Y, 9’ 

(111,12) 

Assuming the eigenvalues A, + A2 + A 3, 
we diagonalize B, i.e.: 

by solving the secular equation: 

(AE - B( = 0, 

or, in extenso: 

A-f,, -1, 0 

‘5’ A, 0 

-f 3' 0, A 

so that 

B A(A2 - Af' - f2 

fl + f2 
A3=0, A12a2- -1+f2 

, v 4 

T and T-' are, respectively, given by: 

T = 

and 

> - 0 

(III,l3) 

(111,14) 

(III,14a) 

(III,'5) 

(111,16) 

(III,l7) 
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From (111,13), we have: 

B-TAT-' 

and 

B" - (TAT" ) (TI\T" ) . . . . . (TI\T" ) = TAT?" 9 

so that we obtain for (11X,11): 

(11?,13a) 

(III,l3b) 

Consequently, the total solution reads: 
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where the perturbation integral can be evaluated by an iteration 

method according to /6/; its evaluation is promising insofar as 

it offers several possibilities of adaptation, viz., by choosing 

the numbers of iterations, the step size, and the break-off of 

the a-summation. 

2) Solution by Recurrence Formulas: 

Applying D\)times to y, and splitting up the operator powers we 

obtain: 

DVy, = D V-2(D2y,) = D"-2(f3 + fly2 + f2y,). (111'21) 

Evidently 

,,v-2f3 = f3(v-2)s (111'22) 

In order to avoid meaningless expressions, we have to define: 

D-p = 0 for p> 0. (111~23) 

Using the well-known Leibniz rule for the D-operators, we obtain 

for the second and third terms of (III ,21), respectively: 

D'-2(f,y2) = r ~;2)DvflDv-2-yy2 = 
e=O 

P DCf,DP-'-Yyl 

and 

DQY2(f2y,) = DQf ,,v-2-q 
2 Yl' 

(111~24) 

(111~25) 

so that the recurrence formula for DJ is given by: 
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DV& - y, + (111'26) 

With the help of this result, the total solution reads: 

.(DQflDY-'-uyl + DQf2D+2-uyl) + y, + ty2 + 
1 

2 
+ $- D2yl + + 3 D3y + t4 4 , 4! D Y, (III,27) 

This formula is not difficult to code. It is, of course, possible 

to split known functions from the total solution, also in this case; 

one of the ways in which this splitting is possible is evidently 
Y2 

equivalent to the method used by GROEBNER, his part etD1 y1 
i) 1 

esbentially being the hyperbolic (trigonometric) main term of our 

method. - In contrast to GROEBNER'S method, no way of estimating the 

error made by breaking off the computation seems to exist for the 

recurrence formulas, up to now. Nevertheless, they may prbve to be 

superior to the first way, from a physicist's point of view, owing 

to their easier coding and the fact that an analytic method of 

error estimating may be replaced by experience on the machine, for 

practical purposes. 
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Chapter IV 

Solution of the Equationa Re.sulting From a Separation of the 

Helmholtz Equations in Special Coordinate Systems 

by A.SCRE$T and J.WSfj.,. 

As we will see below, the equation 

z?(t) - f, (t>z’(t) - f*(t)Z(t) = 0 

represents the most general type of the equ'ations resulting from a 

separation of the Helmholtz equation: 

(IV,1 > 

This equation is known to be separable in the following 11 coordi- 

nate systems /17/. 

a) Rectangular coordinates: the equations resulting from a separation 

in these coordinates are extremely simple compared to those occurring 

in the other systems insofar as: 

d*X 
-- (5 
dx* 

+ aJ) X = 0 

d*Y - + a2Y = 0 
dy* 

-+ (x2 d*Z 
dz* 

+ aj)Z = 0 

Evidently, 

f,(t) = 0 
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and 

i2(t) - conat. 

the rolutione of these equationa respectively being trigonometric 

and hyperbolic function8 depending on the sign of the constant. 

b) Circular-Cylinder Coordinates (r, Ip,z): 

-+Li!L d2R 
dr2 r dr 

+ a3) Ii - 0 

d2Y -+a2Y=0 
d$2 

d2Z - + (x2 + a3)Z = 0 
dc2 

In (IV,2) 

and 

a2 f2(t) I - + a3 
e 

the solutions being Beeael functions. (IV,3 

to the ease of rectangular coordinates. 

C) Elliptic-Cylinder Coordinates (9, I, z): 

d2H -- (a2 + a3 a2 cosh$)H - 0 

d2Y 

7 
+ (a2 + a3 a2 COS2Y)Y = 0 

d22 + (x2 + a,)Z = 0 
dz2 

(Iv,*) 

(IV,J) 

(IV,4) 

> and (IV,4 .) are analogoue 

(IV,5) 

(IV&) 

(IV,7) 
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In (Iv,5-7) 

f,(t) - 0 

where ae 

f2(.t) = a2 + a3 a*. cosh2t in (IV,5) 

f*(f) = -a2 - a3 a2 COB t in (IV,~) 

f2(t) = -x2 - a3 - const. in (IV,7) 

(IV,5) and (IV,~) are eolved by Mathieu functions, (IV,7) ie ana- 

logous to the case of rectangular coordinates.w 

d ,) Parabolic-Cylinder Coordinates (P,V . z>: 

&L( 
dp* 

a2 + a3p2)M = 0 

d*N 
dv2 

+ (a2 - a U*)N = 0 
3 

i2 + (x2 + a3)Z = 0 
dz* 

Evidently, in (IV,8) 

f,(t) = 0 

f*(t) = a2 + a3t2; 

In (IV,P): 

f,(t) = 0 

f*(t) = -a2 + a3t2, 

(IV,8) 

(IV,Y) 

(IV,101 
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and.'in (IV,lO): 

f,(t) = 0 

'.fe(t) I -x2 - a3 = const. 

(IV,8) and (IV,Y> are solved by Weber functions; (IV,lO) is again 

analogous to the case of rectangular coordinates. 

4 

IIl 

in 

in 

Spherical Coordinates (r, 9, Y): 

--+ (x2 2 dR 
r dr 

-z)R=O 
r. 

d2Y 

7 
+aY=O 

d 3 

(IV,ll) we have: 

r2(t) = -x2 + 2, 
t2 

(1v;12): 

fJt) = -cot t 

f2(t) = -a2 + A- 
sin*t 

(IV,l3): 

f,(t) = -a1 - con&. 
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(Iv,ll) is solved by Bessel functions, (IV,72) by Legendre functions 

and (IV,l3) is trivial again. 

f) Prolate Spheroidal Coordinate.9 $,a#): 

d2H + cothpu + (w 2 a2 sinh* d7 7 - a2 - --&-)H-o 
7 

(Iv,l4) 

& + coty @ 22 

d5* 
+(nasin +a*- % 

dz 
--&Je = O 

d*Y -+a3Y=0 
W* 

f,(t) = -coth t f*(t) = -n*a*sinh*t + a2 + 

In (IV,151 

f,(t) = -cot t 

f*(t) = * * * -x a sin t - a OL3 * + - 
sin*t 

In (1~,16) 

f,(t) = 0 

f*(t) = a3 = const. 

(IV,l4) and (IV,l5) are solved by Legendre functions, (1v,16).is 

trivial again 
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g)'Oblate Spherical Coordinates (~,3,+); 

2 
&!) + tanh,s + (x2a2cosh2T r a2 + 
a-? d? 

d2e - + cot3 g 
da2 

+ (-x2a2sin 23 * a2 - 

d2Y -+aY-0 
ay2 3 

In (IV,l7) we have: 

(IV,1 7) 

(IV,1 8) 

(IV,1 9) 

fl 
= -tan.h t 

f2 - 
-n2a2cosh2t + a - A 

2 cosh*t 

and in (IV,l8) 

fl 
= -cot t 

f2 - x*a*sin*t - a 2+-T sin t 

and in (IV,lP) f,(t) - 0 
f2(t) I -a3' 

(IV,l7) and (IV,lB) are solved by Legendre functions, (IV,lg) is 

trivial again. 

h) Parabolic Coordinates (p,V, Y): 

!&!+1.s 
dir* .P dp 

+ (x*p* - a2 - &M = 0 
P 

d*N 1 dN 22 
T+--+((wJ +a*- 
dJ u d3 

v$N = 0 

(1v,*o) 

(IV,21 1 
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d*Y 3 -+aY-0 
d? 

In (X1,20) 

f,(t) - - + 

(Iv,=) 

f2(t) - - x2t2 + a2 + 3 
t2 

in (IV,*l) 

f,(t) = - $ 

f*(t) I - x*t* - a2 + 2 
t* 

in (IV,**) 

f,(t) = 0 

f*(t) = - a3 = const. 

(IV,20) and (IV,*l) are solved by Bessel functions, (IV,22) is the 

trivial trigonometric case. 

i) Conical Coordinates (r, ia,n): 

-- + (n2 2 dR 
r dr 

-9)R = 0 

(3*-b*) (c*-3) 9 - ('23 - 

(b*-A*) 2 2 d*A (c -A ) 7 + )L (*A*- 

In (IV,*3) 

(IV,23) 

b*k*)) g + (a# - a3)@ - 0 (IV,24) 

b2+c2)) u- (a2A2-a3h = 0 (IV,25) 
dh 
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2 
a 

f#) - 
-.a2t 

(t2-b2)(c2-t2) 

in (IV,25) 

f,(t) = 
t(b2+c2-2t2) 

(b2-t2i(c2-t”) 

f20) - 
a2t - a 

(b2-t2)(c2-t*) 

(IV,24) and (IV,25) are solved by Lad functions, while the solution 

of 

3) 

(IV,PJ) ia given by Bessel functions. 

Elllpeoidal Coordinates: Dllpeoidal Coordinates: 

d2H d2H ( 2y2 -( b2+c2)) dH ( 2y2 -( b2+c2)) dH (n2p4 + a 7” + a*) (M*?~ + a 7” + a*) 

2 + (y2-b2’) (T*-c2) y, + 2 + (y2-b2’) (T*-c2) y, + d’9 d’9 (r2-b2)(72-c2) (r2-b2)(72-c2) 
H=O H=O 

d20 3(2a2 - (b2+02)) de lx2a4 d20 3(2a2 - (b2+02)) de lx2a4 + a,?’ + 013) + a,?’ + 013) 

2 : (a2-b2)( c2-q2) d3 - (a2-b*) (c*-3) 2 : (a20b2)( c2-q2) d3 - (a2-b*) (c*-3) 
8 =o 8 =o 

d2A h(2A2 - (b2+c2)) 

- +. ( b2-A2’) (c*,h*) dA2 

In (IV,26) 

f,(t) - 

f2W = 

.(-2t2 + (b* + 

dh (x2A4 3 +ah 
2 

+ a21 
- + = 0 
dA (b2-A2)(c2:A2) 

(t2 - b*) (t*- c*) 

-x2t4 - a t2 - a2 

( 2-l?) (2,c2) 

(IV,26) 

(IV,*7) 

(IV928) 
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in (IV,27) 

t(Zt* - (b2 + c2)) 
f,(t) = 

(t*-b2)(c2-t*) 

n2t4 2 

f*(t) = 
+at +a2 

(t*-b*)(c*-t*) 

in (IV,28) 

f,W = 
t((b2 + c2) - 2t2) 

(b2-t2)(c2-t2) 

f*(t) = 
-(n2t4 + a t2 + a2) 

(b2-t2)(cz-t2) 

All of these equations are solved by means of Lam! functions. k) Paraboloid Coordinates (b,V, A): 

& + 1 (2~ - (b+c)) 2p2 + aT& - a2) 

db* 
dM+ ( x Y=O 

2 (u-b)(w) dp (Cc-b)(p-c) 
(IV,291 

d2N 1 (20 - (b + c)) dN (w2\1' + a V - a2) 
2+- -+ N=O 
do 2 (b-u)(c-u) (b-u) c-v) 

(IV,30) 
du 

d2h 1 (2~ - (b + c)) dh .2h2 +ah-a 2 
-+- 
d h2 

-- 
2 (b-A)(+c) di. (b-h)(h-c) - ’ 

In (IV,29) WE have: 

(IV,31 > 

f,(t) = $ 
2 2 -xt -at+a 

f2W = 
2 

(t-b) (t-c) 
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in. (IVJO) 

-,2t2 a t 
f#) = - 3 

+ a2 

(b-t) (o-t) 

and in (IV, 31) 

x2t2 
f2W - 

+ a t - a2 

(b-t).(t-c) 

The eolutions are Baer functions. 

Apparently, some of these equations have singularities; as the Lie 

solution to be discussed is only valid for regular functions f 1 
and 

f2' we have to exclude these singularities. In the following general 

derivations we restrict consideration to regular domains. 

We are going to apply the methods presented in Chapter II and III to 

the equations resulting from a separation of the Helmholtz equation 

in 11 coordinate systems /17/. 

In presenting our results, we are going to adopt the following prin- 

ciples of ordering: the invidual types of equations are subsumed 

under somewath generalized types for which the two formalisms are 

carried out until a reasonable vicinity to numerical evaluation 

seems to be reached. Under each type the special cases in which it 

appears are mentioned. 

Type I: 

z"(t) - cz(t) = 0, 

c being a constant. 
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This type contains all three separation equations in rectangular 

coordinates, two of the equations in circular-cylinder coordinates 

and one equation among the equations in elliptic-cylinder, parabolld- 

cylinder, spherical, prolate spheroidal, oblate spherical,,and para- 

bolic coordinates, respectively. 

t ' = z.I, = 1 

Z’ = z; = z2 

z” = zs = czl 
while the Lie operator is given by: 

a a a 
D--+z-+cz - 

a=O 
2 a2, I az2 

The solution of the systems is given by /l/: 

the evaluation of which is extremely simple in this case, as 

Doe, = z, 

D'z, = z2 

D*z, = cz 1 

D3z, = cz 2 

D4z, 
2 

= c z 
1' 

or generally: 

be, = CJZ, 

D*\'+1 
z1 

= CJZ 2' 
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80 that we may write the solution: 

z(t) = 

= 2 , coeh (tc) + 22 
P 

8in.h (tG> 

9b or for c = -c : 

z(t) = z, COB (tycr‘) + -2 
v 

sin (tv), 

respectively, depending on the sign of c. Evidently, no recurrence 

formulas are necessary in this case, as the solution reduces to its 

"main part" split-off from 

Using the method presented 

D, = 

with 

VT = (&, g-, , 
1 2 

and 

Evidently, 

the total expression. 

in Chapter II,2 we obtain in our case 

= (~1 s “2) AV 

D; (z,, z2> = (z,n z2> A”, 

while the part of the solution due to D 
1 is given by: 
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Diagonalizing A by 

T-'AT =A, 

the eigenvaluee resulting from 

IAE - Al = A 
I I 

-' = 0 
-1 h 

are 

TT and T-' are given by: 

T"' = q+J- 

.l (Y;$ 7 , C 

resgectively. 

The total solution is given by: 

Evidently, this perturbation integral vanishes as there is no 

zo-dependence in the operator D. 
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. 
3-v If tTho War.1 Ewstion): 

'.i i 
.' 

t.(t) + i it(t) - fa_ + c) z(t) * 0 t2 (IV,32) 

_. a, b, ana c_ !eing constants. 

Thim’equatlon appear8 among the equations of the circular-cylinder 

ooordinat.. (6 I 1) and of the spheripal coordinates (a I 2) and 

doaioal aoordinater. In t I 0 the equation is singular. We solve the 

@quition for the domain Q ) O. 

To r(rQ~ mplroo this equation by the following system; 

t' - 2’ - 1 ,o 

Z’ - z; r z* 

rhiio the Lia operator la give? by: 

. a D- a - +. z a 
2 -+ o-2 

a=o asl c 
2 

2 
+(S+c)z,-E 

0 . =o I az2 

The rolution lr given bycthe following forniula derived in Chapter II,, 

z(t) ? f 
Y-O 

$ D's, = z 5 $+& (",-2) (f,%o)Du-l-Qzl + 

+ f2(e)(zo)Du-2-pz,) + z, + tz2 

With the help of: 

fpb) -b+C 
t2 

i$?,)(t) - (-l)"+'p! at 4 Y+' 1 

i$J(.t) - t-1 )e(P+’ > !t-(Q+*)+c* 
OQ 
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where 6 
OP 

is the Kronecker symbol, 

we have in our caee: 

z(t) -z 5 z(yi2) { (-l)~+lp!aED-(e+!)p”-l-ez, + 
+ (-l)‘(p+t)!a 0 -(Q+2)+ cb 

.oe 
#-2-e, 

J 
‘+ z , + t+ 

or, splitting off known functions from the total eolutlon: 

-2 
z(t) = z2 (-+ coah (t - 

a 
I; - l-j+ z+oehy(t - 'I + 

+ z 2 
C 

(-z") einh (t(-a)) 

zT+c 

-l+z, O -1 + 
a Z 0 1 (- +I2 

0 I 

With S2A and S2h+,, respectively, given by 

SC 
2 = - (ii-2) (-f)2Q+1(2Q)!azo --(2e+l+_ f )**-2-2qZ2 

k= 0 

b 
+ (-- 

A-l 'Q 
Z2 

+ c> 22 + S2A-1-2q + 
0 

-2 
+ 

cv 
( 

'C 
~~;~)(-1)'Q(2~+1)!az~-(~~+~). ((F)2*-3-2ea2 + 

0 

0)s; + 

b 
+ (-- + c> 

A-l-Q 

z 2 z1 + S2h-2-2q I+ 

0 
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+c (2:E2)[(-l)2s(?Q+l)!t-(2Vt2) + CboQ] l (2 + C)*-"pzq + 

+c .(‘t,‘, k-j)2e(2e+l) !t-(2C+2) + Cboj . ((- ~)2h-3-2QZ2 + 

+s 2h-202q >+ 

+g (',^,;:j Fe1 j2e+lpG+2) !t-(2Q+3)+cboJ . ((- e)2h-4L2y + 

+ (- 5) 2h-5-2e (+ + c)z, + (+ + c) h-2-q z2 + s 2~-3-2~ 1 

0’ Z Z 
0 0 

and 

A-1 

> 

2A-1 
( ) s2~+1 * * 29 

!,&G+1). (- +J~~-*Q-‘z~ + 
0 

!at -(29+'). ((+ + CfQZ, + s2*-2Ql + 

zO 

z 
( ::I;) (-1)2Q(2Q+l)!at 

-ch+*) + . (( _ y-2-2riz2 + 
0 I 

+( +, 2A-3-2~(+ + c)z, + (A +* 4h-‘-QZ2 + ‘&,-2Q) + 
0 Z Z 

0 0 

h-l 
2;-1) (-,)2Q(2Q+,)!t-(2k+2)+ hoG . (2 f c) 

i-1 '(1 
22 + 

+ 

h-l 
$91) (-1)2Q(2Q+l)!t-(2'+2) + cbor . ((- y 

2h-2-2Q& + 
2 + 

+ ( F) 2 -3-2Q(.+ + C)Zl + S2*4-2;! + 
0 Z02 
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+g (~~;:)[(_1)(2r+')(2~+2)!t-(2Yt))+ cbFJ. (($)2A-3-2pZ2 + 

b 
+ (- + c> 

h-l ‘Q 

Z2 
zi + s2*-2-2e) L (- y2A-‘(+ + 4’,* 

0 0 

The first three S which have to be calculated in a direot way are: 
Q 

Z 0 
so = + z2 81 

b/zo2 + 8 
s, =,a/zo - z2' 

s2 = 0. 

Using the iterative method we obtain for D, 

VZo2 
a 

azl 
-a /z. a 

) 0 

I (2,. z2) AV 

az 

and 

a 
D2=%. 

The eigenvalues of A are given by: 

TT and T-' are given by: 

TT - 

i 
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. and 
a 

-q 
1 

.T 

ncm,. 0) 
a +4b+4zo 0 , b 

-- 
a2 4z02 

2 

0 zO 

respectively. 

The total solution ia given by, 

b --c 
2 

zO 

We now conaider the equation Z?(t) + * z'(t) + x2z(t) = 0 (I&33) 
0 

This equation results from equation (IV,jZ') setting: 

t+to + t, a,- 1, -6 - It2 

The solution of equation (IV,33) reads /7/, /8/: 

z(t) * t, coah xt + 
z2 y sinh nt - 5 (f,r,Z, + f*&) 

where 

v-l, *jv = - to j,w 
._ + 2w2fjiti2 + + x2(2v-5) - x~~,~~S- 

0 

j = 1,2 (IV,34) 
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f10 = O 

fll = O 120 = 
0 

f 12 = O f21 
-0 

x2 1 

f13 =5 f22 =5 

Type III 

Z"(t) + (a + bt2)Z(t) - 0 

a, b being constants. 

This equation appears as the +- and y-equation when separating the 

Hslmholtz equation in parabolic-cylinder coordinates. 

The equation is equivalent to the following system; 

t’=Z’ 01 
0 

Z’=Z’ =z 
1 2 

Z" 0 Z12 I - (a + bt2)Z1 

while the Lie operator is given by: 

D=$-+z 
0 

Using the recurrence formulas the solution is yrin, .given by the generrl 

formula (11,14), where fi(t) are specialized a$ 

f'(t) = 0 

f2(t).= -(a + bt2), 

in our case. 

The derivatives of fi(t) are extremely simple, in this case: 
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.*, W (*I - Q 

f;(')(t) I -2bt 

12(2)(t) I -2b 

f2(3) (t> - 0 

‘0 that (11~14) reduces to: 

z(t) - t” 
u! Ddzl = + bzo2)).$$, t 

1 + (";")(-2b.,) D'-'z, + ("i2)(-2b) D"-4z1 

J 

+ z, + tz2 = 

M 2, D"-2z1 + (v- 2)(-2bzo) .D'-',, + 

+ c(d-2)(~1-3) 
2 (-2b)DJo4zl 

I 
+ z, + tz2 

Ueing the Iterative method (Chapter 11,2) we again gut 

D-D +D 12 

with 

Ol - '("I 3) = (z,s z2) Av 

The eigenvaluee of A are given by: 



T-’ P 

The total solution is given by: 
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TYPO IV: 

Z"()) - (a2 + a3r2cosh t) Z(t) -, 0 (IV,35) 

a2' 3 a end a being constants. 

This equation appears among the equations resulting from a separation 

of the Helmholfz equation in elliptic-cylinder-coordinates. The so- 

lution functlonm are Yathieu functions /17/, /ly/, /22/, /33/. 

Eq- (IVs35) +m.:~ tit-t* ,ih ,tke SU~II:, 

z; - 1 I t’ 

Z' - z; - z2 

Z* - ZN2 - (a2 + a3a2 corh t)Z, 

Thi Lie operator D is given by: 

8 
D-T+= 

a 
2%7 + (a2 + a3a2cosh t)z, (IV,36) 

The rolutlon of Eq.(IV,35) ie given by Eq.(II,ld). In our case, 

f, and f2 in Eq.(II,lJ) are given by the relations: 

s, - 0 

f2 - =2 + a3@'coeh t 

The pth derivative of f2 is given by: 

2 

f(Q) I 
a3r cash t + a$oe (Q even) 

a a2sinh 
3 

t (4 odd) 
6 PO ir the Kronecker symbol 

As shown in chapter II one can splitt off known functions from the 

total solution (Eqs.(II,lB), (11,ly). This representation is, however 

disadvantageous insofar as it is much more difficult to code than the 

reourrenco formula representation (Eq.(II,lJ)). 
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Using the iteration method, A,, h2, T and ?2 in Eq.(II,44) are given 

by the following relations,. in our case; 

+ a a'cosh 
3 

t, a2 + a a'cosh 
T= 3 

Al h2 

and 

a 
D2 = a"0 

Type V: 

Z"(t) + + Z'(t) + (x2t2 - a2 - $1 z(t) = 0 

:: 
-* 

(Iv,37) 

2 n , a 2 and a3 being constants. 

This equation appears among the equations in parabolic coordinatea. 

Eq.(IV,37) is solved by Bessel functiona /33/, /36/, /39/, /40/. 

For t = 0, Eq. (IV,37) is singular and therefore cannot bo solved 

by Lie formalism. /I/. By meana of the transformation t+to + t, 

to> 0, one can avoid these singularities. Taking into aocount thie 

transformation, the Lie operator D reads: 

D=&+z -- a 22 

0 
2 a2, 

( 
t + n2(to-Zo)2 + a2 

0 0 

Eq. (IV,Ti') is solved by Es.(II,l4) where 

1 f, =- to+t 

f2 - M2(to-t)' - a2 - + 
(to-t 1 

The Q th derivative of f, and f2 is gi.ven by: 
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f,(Q) - (-l)Q L 

(to;:)'+' 

f2(Q). I n2(t 0- t)So + n= . 2(to - t)a((, - 2x=&i 
a 

G= - (to-t;Q+, (-')% 

whom 6 pi 18 the Kronaoksr 8ymbol 

A,, AZ, T md D2 in Eq.(II,U) are given by: 

-5’ \w+$(Z hL= o 0 - 
t)‘- a2 -4’ 

czO -t> 

X2(2,-t)' - a2 - 4 , n'(z,-t)' - a2 - 

T- i 

a3 - 

ho-t 1 czO -t)2 

\1 
, A2 

/ 

Type VI: 

Z"(t) + coth t Z'(t) + (n2a2sinh2t -a - 2 ---&m = 0 

MS a# a2 and a3 being constants. 

This equation appears among the equations in prolate spheroidal 

coordinates. The solution functions are Legendre functions /lT/, 

/33/, /36/, /39!. At t = 0, Eq.(IV,38 

in the domainit I 
Eq.(IV,38). The 

is singular. We solve Eq.(IV,jB) 

>O. In this case, we can use Lie series to solve 

Lie operator reads: 

D- a a 
F+ z2 zq- (z2coth t + (w2a2sinh2t - a2 

The solution of Eq.(IV,38) is again given by Eq.(II,ld), where 

fl 
= coth t 
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and 

f2 = x2a2sinh2t - a 2- a3 
sinh't 

The Q th derivatives of f, and f2 are given by: 

f,(Q) (t) = (4 -$ +. g 221[B21[ fw&$K-(?+'I 

o<t2<llZ 

k = 1, 2, . . . . . . 

where B2K are the Bernoulli numbers. 

2P-l 
CO8h2t - bpo(+ + Q2> for won c 

+ 

2P-' 
8inh 2t for odd e‘ 

where b po ia the Kroneokor 8ymbel 

Using the iteration method, A,, h2, T and D2 in Eq.(II,44) are given 

by: 
1 

coth t + 
Al,2 =-- 

coth2t + x2a2sinh2t - a - OL3 2 4 2 sinh't 
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- a - 43 
.2 siuh't 

, 

T= 

w2a2sinh2t - a 
2 

n2 

oL3 
sinh't 

/ 

Type VII: 

Z"(t) + cot t Z@(t) + (x2a2sin2t + a2 - --&I z(t) = 0 (IV.39) 

)o a, ap and a3 being constants. 

Thia equation appeara among the equationa in prolate spheroidal 

coordinatea, epherical coordinates (a=o) and oblate spherical 

ooordinatee. Eq.(IV,39) is solved by Legendre functions /17/, /33/, 

1361, /39/. Evidently, for t = nn (n = 1,2, . ..) Eq.(IV,jg) is singu- 

lar. We solve Eq.(IV,jg) f oraally for the regular domain t + nw. 

The Lie operator reads: 

a 
D-BBg+z 

a 
27 

+ (-z2cot t - 
22 2 (n a sin t + a2 - AZ, g- 

sin2t 2 

In our case, f, and f2 in Eq.(II,l4) are given by: 

fl = -cot t * + + 

f2 = -(w2a2sin2t + a2 - -&I = - g- (1-cos 2t) + a2 + a 3 & ctg t = 

x2a2 I - (7 (1-coa 2t + a2 + a (2K-1 )t2K-2) 

For the numerical evaluation of Eq.(II,lJ) we need the uth deriva- 

tives of f, and f2, which are given by: 



(PI< xl 
(I WC 1, 2, 3, . . . . . . 

(-I)+ zPa18in zt 
p odd 

+ 
22 

(& l 2-?M 2t - F 6 po - +po 

when Bpx are the Bornoalli number8 and 6 pe i8 the Xronooker 8pbol 

(0 tt2 t n) 

Considering Eq.(II,44) A,, AZ, T and D2 are given by: 

and 
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---.. ._. . . ..--. -.. -- . .__... ,._- ,.. ..--11_.1 I I I . . . . . . .,., - I ., . . . . , , . .-, . ,. 
~- . . . . .._ . 

Type VIII: 

Z"(t) + tangh t Z!(t) + (w'a'cosh't - a2 + 

n, a, a2 and a 3 being constants. 

This,equation appears among the oblate spherical coordinates and 

i8 rolved by Legendre functions /IT/, /33/, /36/, 1391. 

The Lie operator ia given by: 

D- a a 
%+" 2zy + (-z2 tanb t - (x'a'cosh't - a2 + 

f, and f2 in the general solution of Eq.(II,14) are given by: 

fl 
* -tan.h t = g ,w BzKt2'-' 

I 

(t2< p, 

B are the Bernouilli numbers. 2K 

f2 - -(r2a2coah2t - a2 + (cash 2t + 1 )-a=+ 

+ a3 & (tanh t + C)) 

f,(Q) = 

-J 

g .2?q.2&d*li p-(p+’ JBpr 

a 

where BzK are the Bomoalli numb8r8 

(t2< 5) 

Q = 1, 2, 3, . . . . . . . 
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fi')- a3 I? 
22"(2=K-l~)B2K 

2K)! 
‘f;;~;E-f:,;;! t2K-(p+2) + 

K=l 

+ 

(t2< a, 

_ - pp-’ w=.= 
2 8inh 2t for odd p 

_ - p-1 x2.2 
2 cod 2t for ewe8 p 

where B 2K are thw%cnoull% numbem 

Q = 1, 2, 3, . . . . . . . 

Using the iteration method one obtains for A,, AZ, T and D2 in Eq.(II,44) 

1 
tanh t + 

hL= = --- 
w2a2cosh2t - a2 + "3 

2 cosh't 

T = 
- a 2+ 3 9 -n2a2coah2t - a 2+ 

cosh't 

and 

Type IX: 

z"(t) + 
(2t2-(b2+c2) 

z'(t) + 
( x2t4+a t 2+a2) 

(t2-b2)(t2-c2) (t2-b')(t*-02) 
z(t) = 0 (IV,41) 

b, c, x, a2 and a 3 being constants. 

This equation appears among the equations in conical coordinates 

and ellipsoidal coordinates and is solved by Lam! functions /17/, 

/20/, /33/, /34/, /41/. Eq.(IV,dl) is singular for t2 = b2 and t2 = oz. 
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We solve Eq.(IV,$l) for the regular domain: t2 + b2, t2 + c2. For 

thi8 regular domain we can ulre Lie series in order to represent the 

86&t iOZl. 

The Lie operator reads: 

a a 
2t=-(b=+c=) x2t4+a t2+a 2 

I 
a 

D= T+B zaz,- (t=-b=)(.$=-c= ) + (t=-b=)(t=-c=) 7 

f, and f2 in Eq.(II,l4) are given by the relations: 

f, I - ( 2t2-(b=+c=) 

(t=-b=)(t=-c=) 

w2t4+a t ‘+a 
T2 i - 2 

(t=-b=)(t=-o=) 

or 

and 

Ai’ Bi (i - 1, 2, 3, 4, ) being constants. 

The Q-th derivatives of f, and f2 are given by 

f,(Q) = (-t)‘Q! 
t 

*2 5 

(t-b)Q+’ + ( t+b)‘i+l 
+-A-+ A4 

(bc)Q+’ (t+c)Q+’ 

and 

f=(Q) = (-l)‘Q! 
B1 B2 B3 B4 

(t-b)Q+’ + (t+b)U+’ + (t-c)U+’ + (t+c)Q+’ 

it\; c9 ItI >’ b 
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If one solves Eq.(IV,dl) by iteration method, one has to put the 

following expressions for A,, h2, T and D2 in Eq.(II,44) 

%,2 

T= 

and 

B2 = 

2t2-(b2+c2) 
I- 

(t2-b2)(t2-c2) 

a 
az 0 

Type X: 

1 (-2t-(b+c)) 
z"(t) + - z'(t) + 

(s2t2+a t-a2) 
a(t) - 0 (IV,42) 

2 (t-b)(t-c) (t-b)(t-c) 

This equation results from the separation of the Helmholtz equation 

in paraboloidal coordinates. The solutionsare Baer functiona /17/. 

Eq. (IV,42) is singular at t=b, t=c. We solve the equation in the 

region t+b, t+c. In this regular domain, we can represent the solution 

of Eq.(IV,42) by Lie series. 

The Lie operator for Eq.(IV,42) reads: 

a , (b+o-2t) x2t2+a t-a 2 
+22zq+ ' (t-b)(t-c) z2 - (t-b)(t-c) " % > 

The general solution of Eq.(IV,42) is given by Eq.(IT,ld) where * 

55 



f2 - 
-n2t2-a t+fx2 

(t-b)(t-c) 

The Q th derivatives of f, and f2 can be obtained by an analogous 

procedure as under type IX. 

Using the iteration method to solve Eq.(IV,42) one has to put the 

folloling expressions for A,, A2, T and D2 in Eq.(II,44) 

%,2 = 

1 b+c-2t 

2 (t-b)(t-c) 

De+ 
0 
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Chapter V 

Applications in Physics by A.SCfZETT and J.WEIL 

&Example From Rigid Body Mechanics: 

The equation of motion of a plane mathematical pendulum of length 1 

and mass m in the case of a suspensory point vibrating in vertical 

direction according to the law a coswt (a,w constant, g gravitatio- 

nal acceleration) is given by /lp/: 

‘dr + 6(t)& + (+ - $a2 cosot)a = f3(t) 

if the elongation a is sufficiently small. 

In this case: 

f,(t) I -a(t) 

f2(t) = - 7 + +osOt 

the solution is given by: 

r(t) = 
CT 

$ D'Y 
v= 

Assuming A, i A2 { A3, we obtain the following eigenvalues of the 

matrix B (chapter III): 

and 

A3 = 0, 
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no that the TiJ (the components of transformation.matrix) are 

given by: 

1 1 

t kfd - 
12'- 2 

1 i!p - f - $&ostr q 

( 

t73 = O 

t21 - - ( 4- P02COS0 t 
1 

t22 = - 
( 

': - +a' co.90 t 
1 

ti3 = 0 

t31 = f3 

t33 = ' 

The solution is given by (111,20). 

Using recurrence formulas, the solution reads: 

Y(t) = 5 $ g[f3(pz) - (yp2) D%,(t)D"-"Qy, + 

t2 

+ Yl + tY2 + 2 D2y, + 5 
3D3y +t4 4 

, 4! D Yj' 

An Example From Electricity: 

Another problem described by the following circuital equation may be 

solved within our formalism: 
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d2g 
dt2 

+P L%L+L*E(t) 
L dt LC(t) L 

i.e., a circuit containing a driving e.m.f. an inductance L in 

series with acapacitance C varying with time, and a constant re- 
C 

sistance R. Aesuming C(t) = coo + Loa 2-p) = ,&& t ' 

(if f is small enough) and writing Q = Y, l/LC, = 02,, 
1 

R 
Zs'+ P QT = 2oC, '. = (0,/0,)~ and E(t)/$'L = f3(z), we 

obtain the following inhomogeneous Mathieu equation: 

Y” + aoLY’ + (ii - Pqcos2z)Y = f3(z) 

where 

f, = -2oc 

f2(Z) = 2qcos2z-a 

(2 corresponds to t in 

The formal solution is 

the general treatment) 

giv:n by: 

r(t) = r 
ZV 

y=o 
z DVy 

The eigenvalues of the matrix B (chapter III) are given by: 

9,2 = 

A 3=o 

while the elements of the transformation matrix are given by: 

51 = - 
6(+ -jELi 

t 
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t21 a 2qcoe2z - 'a 

t22 1 2qcoe2z - z 

t33 - ' 

Using these results, the general solution may be written in the way 

given in chapter III Eq.(III,20). 

Gravity Gradient Stabilization of Artificial Satellites. 

Aa Rumyantee showed in Athens at the International Astronautical Congress, 

mummer 1965, the problem of gravity gradient stabilization of artificicial 

ratelliter leadr to Mathieu functions. We did not hear this lecture ,,but 

thi principal features of this problem may be contained in the simple 

model of a pendulum with a vibrating suspensory point the theory of 

which la given in many textbooks, e.g., /19/. The motion of the pendulum 

ir desoribed by the following equation: 

'i(t) + f,(t)Y + f2(t)Y = f3(t), 

where f2(t) is given by: 

T*(t) I (+ - go' cos'3t) 
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In this equationy, the elongation, is assumed to be restricted to 

small values,O is the frequency of the vibrating suspensory point, 

g the gravitational acceleration and0 is the frequency of the 

vibrating suspensory point; the functions fi(t) are supposed to be 

regular. Evidently, this equation is of the Mathieu type and, con- 

sequently, belongs to those types of differential equations which have 

been treated by both lines of research of our institute; the general 

one which has set up a program for solving homogeneous and inhomo- 

geneous second order differential equations and the special one whose 

efforts are focused on treating the Mathieu equation. 

Calculation of the Strongly Focusing Synchrotron: 

The sronGly focusing synchrotron, a device proposed by Courant, 

Livingston and Snyder /lp/, is a high energy accelerator which has 

an even number A ofuagnets along the circle representing the "ideal1 

path of particles. The motion of the particles is described by the 

following Mathieu equations for Q and z, the radial and axial devia- 

tions from an ideal circle: 

2.u 
du + s (l-a-b cos 2 U)Q =k 

d2z 
2+ a + b cos 2 u) z = 0 
du 

where N T.Q = 2u, Q =ut, and Ois the sychrotron frequency as may be 

seen, e.g., in /lpi. Evidently, these are also equations of the Mathieu 

type whose treatment lies on the line of our investigations? 

The Problem of the Heavy Asymm,etrical Top.(Gyroscope). 

Another promising physical application of Lie methods is the problem of 
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the heavy arymmctripal top. Ueually such bodies - e.g., space ve- 

hiclee - are treated am symmetrical ones shoring only a slight de- 

viation*from rrymmetry which can satisfactorily taken into account 

by a ruitable perturbation calculation. Lie series formaliem, hor- 

ever, allorr the total asymmetrical problem to be solved. In parti- 

oular, owing to the favorable decomposability of the Lie operator 

D - D, + D2, all deviations from symmetrical conetxxction may be 

put into Dp. In this way, we will be able to check the present-day 

perturbation calculations from the view-point of the general theory. 
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Chapter PI 

Representation and Computation of Hathieu Functions by Means of Lie Series 

A8 a first example to the previous investigations the Mathieu 

equation 

y"(x) - (2q.ccrs 2x - A).Yb) - 0 

wa8 etudied in order to demonstrate the ueefulnesa of the Lie series 

method for solving (1). According to their periodic nature, the Yathieu 

functions - at leaat those of the 1 et kind - are not very appropriate 

to a representation by power series, as obtained in the deecribed way. 

This unfavorable example rae chosen on purpoee as we ranted to establish 

the limits of this method as quickly ae possible. The fact that in epite 

of that satisfying reeulfe can be obtained attests to the usefulness of 

Lie series formalism. In so doing, investigation8 on the remaining term, 

better convergence (in this respect, Dr. Knapp's iteration method might 

be very advantageous) and on computer times (e.g., compared to Fourier 

series representations) were put off, ae above all, we want to show that 

useful, partly even numerical representation8 of the solution of (1) can 

be obtained by aeane of the method worked out. (See also the concluding 

discussion of thia example). 

(6.1) Theory 

(F. Cap and Floriani D.) 

(6.11) General results: 

(6311)In the following; we ehall summarize the method of solving 

v”(u) - h(u).v(u) = g(U) 01’1) 

in a way ihich ia somewhat different from that chosen in the previous 

chapters since the formulae derived in this connected will be needed 
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in what follows: 

2 
.O 

- Ul z, = VI z2 = 5 v(u) 

From (VI,l) and (VI,2), we obtain the following system: 

i. = 1 

. 

Zl = z2 

. 

z2 = h(Zo)J, + do> 

and the Lie operator 

a 
+ z2'5q + [ 7 -ho 

0192) 

(VI,31 

,> l dz,)]. 6 (VI,4 ,> 

With help of the "commutation theorem" (proof, for example, in Fief. 1 ): 

f(ZOIZ, ,z2) = exp(tD).f(z o’~,,22) = f $ l DPf(zo,z,,z2) (VI,S> 
0 

and, particularly 

z1 = 

co tp exp(tD).z, = 17 . D'z, 
0 - 

and after introducing the following new functions: 

'2k = D2k~ 1. 
- g(2k-2+~o) - z,.hk(zo) 

1 
Y = D2k+‘z -g 

(2k- 
2k+l 1 

k = 0,1,2 

ho) - z2.hkbo) 

,... J 

g(-l)(u) = 7 g(a)aa, g(-2)(u) = r g(-' 
u 

0 0 

)(a)da = G(u 

(VIA 

(VI,7) 

1 

(VI,7a) ,w (z,) = G(p+2+zo) 
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we obtain for the general solution: 

z, = c ~&fz,.@Gy + g(24z,) + v2p] + 
(VI,8) 

+ g ,g$++ .pg2p+’ + g(2p-‘bo) + Y2p+] - 

= z,.Ch(t./m) 
z2 . Sh(t. h(zo)) J' + ~$.[,(~+zo, + *P] . 

Because of 

z = Zn(t=o),(n = 0,1,2,...) (VII91 n 

the following relation holds within the radius of convergence: 

Furthermore, (VI,4) yields: 

D'z, = z2, D2z, = g(z,) + zl.h(zo) 

as well as 

D'hbo) = +--h(zO). &(zo) = g- gb,) 
0 0 

and 
DPh(zo) = h(') boL Dpdzo) = g (p+zoL 

respectively. 

With 

D n+2 z, = Dn(D2z,) = Dn[g(zo) + z,.h(zo)] = 

= g(%,) + "~'zo'-z.,l 

(VI “0) 

(VIll’) 

01912) 

(VI,l3) 
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we have: 

Y 
2k+2 

m D2k bl.h(zo)] - z,.hk+'(zo) 

(VI,14) 
I 2k+3 

- D2k+l 
k, .h(zo)] -z2.hk+‘(zo). 

Using the Leibniz rule we obtain: 

D2F, .h(zo)l - ~(zo).G(zo)] (2k) + 

+ 

0 
).( 2k 

2p+1qy2p+1+ 

(VI, 15) 

D2k+j$h(zoq = [h(zO).G(zo)](2k+1) + 

k 
+ 

&I 
h(2k+‘-2p)(zo).(2:;‘).~2p + z,.hp’(zo) + 

1) 

+ 

From 

t =u-U 
0 (VI,16) 

and (VI,2+9), we have: 

Z =U 
0 0 

z1 = duo) - v 0 

z2 = v’(uo) - vo’ 

h(zo) = h(uo) = ho, h(‘)(zo) = h(p)(uo) = 

gb,) - duo) = goI 
. g(pj(zo) = g(p+uo) = 

(VI,17) 
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In original notation, the general solution is, then, given by 

v(u) = vo. Ch(u-uo)E + ':, 
F 0 

.Sh(u-uo)E r$(.)da2 +c ("p~o)p.Yp(uo) - . 
Ub. 

= v~.c~~(u-u~) 
V’ 

A.sin(u-uo)~~ + /jg(a)da2. + (VI,'8) 

F -0 

+ 
b-uo)p 

Pi .‘p,b,) l 

Its derivative is: 

d 
'ho) + v;.cos(u-uo) 

The following recurrence formulas hold for the Ypr 

Y2k+2(~o) = b.c]f"' + ho.Y2k + + 

+ 
0 

(2k-2p-1)( 2k 
2p+l)'[lpPp+l + 

01,2P) 

Y 2k+3(Uo) = [h.G];2k+') + ho.Yak+, + (2;;1).h;l.k2k + vo.hE] + 

+ 
0 

(2k+l-2p)(2k+l 
2P ).Ep'2p + + 

+ (2k-2p+;;=;). 
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(k-1,2,3,... ) with (from (VI,7)) 

vo(Uo) * -g(42+uo) * -G(Uo) * 

Y, (U,) = -g(-' )(u,) - -G'(uo) - fg(a)da - 0 
II. 

(VI,21 > 
Y2(uo) - go + vo.ho - go - vo.ho = 0 

Y3(uo) - g:, + v;.ho + vo.h:, - g:, - v;.ho = vo.h:, 

(6.112) There is also another way leading to the separation of the 

sine and cosine terms given in (VI,lB): One wants to approximate 

in the neighbourhood of a point u. the solution of the homogeneous 

equation 

v"(U) - 'h(u) .v(u) (v1,*2) 

by a function A(u) with 

ho) = ho> 
(VI,*J) 

A’(uo) = v’(u,) 

so that for the remaining term 

R(u) = v(u) - A(u) 

with 

Rho) = 0, R'(uo) = 0 

the following inequality holds: 

(VI,*4) 
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in this neighborhood. It.followe from 

and (VI,22): 

bh(u) - h(u) - hb,> (VI,27) 

A"(u) - h(uo).A(u) + 
C 

-R" +[h(uo).R + AAkij+ . . (VI,28) 

In all cases that not are too unfavorable the curled bracket will be 

negligible; in this case, A(u) becomes: 

A(u) - vo. Ch(u-uo) 01929) 

as is given in (VI,lS). Besides (VI,23), the relations 

A’v(uo) = V”(Uo) 

(VI,30) 

hold true. 

R"(uo) = 0 

(6.113) The application of the same principle to the inhomogeneous 

equation (VI,l) leads to 

A”(u) - h(uo)du) + &duo) 

with the solution 

(VI,31 > 

A(u) =/j. + $j.Ch(u-uo)E + &.Sh(u-,,, - ? (VI,32) 

By virtue of (VI,,), (VI,3l) and (VI,32) the following relations 

Abe > * vbo) Rho) * 0 

A'b,>- v'b,> R'(uo)- 0 (VI,331 

AL”(uo)- v”(uo) R"(uo)- 0 



are valid. For R(u) we have u R(u) = J g(ar)da* + 
b-u0 lP 

P! 'Bp("o) 
U. 

with 
B, = B, = 0, 82 = -duo) 

I+,) = +h'(uo).v(uo) 

(VI,341 

(VI,351 

and for the e,(u,) (n=4,3,6,...) (VI,20) by substituting 

y (,u,) -p (u,) 

and adding 

+ b-*,4( U ) hP(, ) 
l-1 

0 l 0 

to the right-hand side, ([x] means an integer with x-lc@~x>, (VI,36) 
or: 

@2k= ‘Pk 
k-l 

- tzo.ho , B2k-1= Y 2k-1 (k=1,2,3,...), reap. 

In the same sense one may in (VI,18) understand 
U 

A*(u) - v o.Ch(u-uo) 'A + -h--.Sh(u-uo) 
r 0 

as an approximation. The differential equation for A* is given by 
u 

A*"(u) - h(u,).A*(u) + g(u) - h(uo). 
ss daba* (VI,381 
U* 

According to (VI,33) and (VI,34): 

co (u-uo)p R+(u) = E 0 p! l yp(Uo), 

Yp(uo) from (VI,20) and (VI,21), and: 

A* b,) = duo) R+ (u,) = 0 

A*’ b,> = v’bo) R*'(uo) = 0 

(VI,391 

(VI,40) 
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A*“(uo) - v”(uo) R+"(uo) - 0 

Splitting up v = A* + R* seems to be more convenient than v = A + R, 

for which reason its derivation was given, in detail, in (6.111). 

(6.114) Another representation of the solution of (VI,l): 

The relations (VI,21) do not change if g(u) vanishes identically: 

y (horn)) - y (inh) 
P P 

for p = 0,1,*,3; @I,41 > 

from (VI,20) the yp for p = 4,5,6,... are well determined also for 

e(u) = 0; therefore, with 

6pbo) = yp (iquo) - yp(hom+uo) (VI,42) 

the folloring equations hold 

6&uo) = 0 for p - 0,1,2,3; i 

bp+*(uo) =b.G]o(P) +t (;).ho(P-c).bc(uo) = 
0 

(VI,43) 

t c (oc).ho(p-u).[8c(uo) + g ('-*j] 
0 

for p = 2,3,4,... The first two terms in (VI,l8) and (VI,lq) do not 

depend on g(u) and are therefore part of the solution of the 

homogeneous equation. 

Because of this hold the relations 

d”> - vhom u ( ) + G(u) + $k) (“-;~)p~~pbo~ 
, 

and 

v'(u) = v~,,(u) + G'(u) + 
b-u0 1 p 

p! '6p+l("o) 

(VI,44) 

(VI,45) 



with the bp(uo) from (VI,43) and G(u) from (VI,78). 

(6.12) Specialization to Msthieu's squation: 

(6.121) We treat this equation in its most usual forms: 

y"(X) = (*q.cos*x - x).y(x> (V1,460) 

and 

Y"(x) = (A - Pq.Ch 2x).Y(x) (VI,46m) 

for the ordinary and the modified Mathieu equations, respectively. 

One obtains the solutions by specializing (VI,l8) to (VI,21) as 

follows: 

(6.122) Ordinary Mathieu equation: 

U’X 

V(U) = Y(x;qtx) 

h(u) = *q.cos 2x - x 

Y,b,) = ‘Pp(xoi9,A) l 

(VI,470) 

For the derivatives of h(u) ne have: 

h (2p-1) = 2q.22P-1.(-l)P.sin 2x 2xo = 
0 0 2q.(-4)p.sin 2 

(V1,480) 

h c2P) 
0 = 2q.22p.(-1)p.cos 2x0 = 2q.(-4)p.cos 2x0 

and, from this: 

sin 2x 
Y3(uo) = v .h' o o = cp3(xoip,~) = -4q.y(xo).sin *x0 = *q-(-4)4(x0). 2 O 

(VL490) 
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(6.123) Modified Mathieu equation: 

u=x 

v(u) = y(x;q,x) 

h(u) = X - 2q.Ch 2x 

'9,(u,) = $,(x,x,~>* 

01,47m) 

(P): Here we have for the derivatives ho 

h (*P-l) 
Sh 2x 

0 = (-2q).22p-'.Sh 2x0 = (-2q).4'.+ 

(VI,48m) 

h c2P) 
0 

= (-2q).22p.Ch 2x0 = (-2q).4'.Ch 2x0 

and 
Sh 2x0 

Y3(uo) = vo.h:, = jZj3(xo;q,X) = -4q.Y(xo)A *x0 = (-2q).4.y(xo).- 

@1,49m) 

(6.124) Additionally we have to mehtion that the solution of (VI,46m) 

also is to be obtained from (~1,460) by 8 substitution x+ix, that is 

u = ix in (VI,47m). After introducing a parameter 6 with 

+l for the ordinary Mathieu equation 
6 * 

-1 for the modified Mathieu equetion 

we get a simultaneous representation of (VI,47o,m) to (VI,49o,m): 

ho = 6.(2q.cos 2xdp-A) 

h (2P-1) 
0 = (2q6).(-46)'. 

h (*PI 
0 

= (2q6).(-46)'.cos 2xa/3 
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sin 2x 
Y3 = (2q6).(-46).vo. 0-F 

26 
r 

(V&49) 

(6.125) As is well known, the solution'of 

v”(U) = h(u) -v(u), 

where h(u) is snslytio at 8 point u = uo9 is alS0 an analytic 

function at the same point. If h(u) c8n be expanded into 8 power 

series within Iu - UJCP the same statement holds for the solution 

v(u). In the case of the Mathieu equations, h(u) ia an analytic 

function with p = OD in the whole complex plene. The SaPe holds for 

the solutions, as well 8s for the approximation A(u). Consequently, 

the remaining term R(u) = v(u) - A(u) is 81SO an snalytic function 

with the rsdius of convergence p = Q). 

(6.13) The Yathieu functions: 

(6.131) For 8ny point of the (A,q)-plane the general solution of the 

homogeneous Rsthieu equation is given by (VI,18) to (VI,21) with 

(VI,47) to (VI,4g). With 

vlw = 1 v;(o) = 0 

v*(o) - 0 v;(o) = 1 
(VI,50) 

one obtcrins two independent solutions. It is very convenient to use 

these conditions in our solution (VI,18) to (VI,21). Any solution 

of (v1,46) is given by 

with 

v(u) = A.v,(u) + B.v2(u) 

A = v(O), B = v'(O.), 

(VI,51) 

(V&5*) 
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v(0) and v'(o) are arbitrary constants. For the fundamental system 

(VI,50), we have (see, eg.: Ref. 19: 2.12): 

v,(u).v;(u) - v; (u>.v,(u) = 1 

VI c-u> = v,(u) (VI,53) 

q-u> *-v,(u): 

(6.132) M8thieu functions of nonintegral order: 

In the following, we denote the different kinds of Mathieu functions 

by the symbols used by Whittsker, Watson, b%zLachlan, Meixner, Schsefke, 

etcr ce, se, fe, ge and Get Se, Fe, Ge. Fcr any given values of A, q 

we can compute the Characteristic exponent p = p(A,q) (Ref. 19: 2.13) 

and obtain two independent solutions ce,&x;A,q) and seP(x;,A,q) resp. 

CeP(x;A,q) and SeP(x;,A,q) with: 

cep(-x) = cep(x) 

sep(-x) = -sep(x) 

Ceu(-x) = Cep(x) 

Sep(-x) = -Sep(x) 
(VI,54) 

From (VI,52) and (VI,53) follows then: 

cep(x;A,q) = cep(O;A,q)-yl(x;A,q) 

y(x;A,q) = se;(O;Atq).y2(*;A,q) Cep(x;A,q) = Cep(O;A,q)-Yl(x:A,q) 
Se,,(x;A,q) = Se;(O;A,q).Y2(x;A,q) 

(VI,55) 

for the ssme A and q. 
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(6.133) ldathieu functions of integral order: They sre the solutions 

if (A,q) lies on the limiting curves between stable and unstable 

regions. 

cem(x;d 8 A = 8,(q) (m=O,l,*,...) 

sem(x;q): A = b,(q) b=l9*93,==e) 
(VI,56) 

They are Floquet solutions with the period 2x (or x): 

ce,(x+x) = (-1 )m.cem(x) 

sem(x+x) = (-l)“.se,(x) 

(VI,57) 
ce,(x+$) = (-l)m.cem($-x) 

sem+l (x+-f> = (-1 )m.sem+l ($x) 

It is necessary to introduce new non-periodic functions to get an 

independent second solution: 

A = 8mh>: fe,(x;q) 8s second solution to cem(x;q) 

A = b,(q): gem(x;q) 8s second solution to sem(x;q) 
(VI,58) 

resp. Fem(x;q) to Gem and Gem(x;q) to Sem(x;q). Ce, ce, Ge, ge are 

even, Se, se', Fe, fe are odd functions. Then it follows from (VI,$?): 

cenb;A=8n,q) = Cen(o;q)~Yl(x;A=8,t9) 

ee,(x;A=bn,q) = een(O;q).yl(x;A=bn,q) 

sen(x;A=bn,q) = se~(0;q).y2(x;A=bn,s) 

f’+iA=8n,9) = fe~(0;q).Y2(x;A=an,s> 

(VI,59) 
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The same holds for Ce,, Se,, Fe,, Gen. 

Some other neceaaary reaulta are: 

(1) A = an(s): 

(a) II = 2k: ceik(o;q) * o - Ce;k(o;q) 

(VI,60 i) 

(b) II = 2k + 1: 

(2) 1 = b,(q)’ 

(a) n = 2k + 1: 

cehk(f;q) = 0 = Cehk(liG;q) 

fepk(O;q) = 0 - Fe2k(O;q) 

Y, (x;q) = s;bvl> = +1 

y;(d = 0 

ce;k+l(O;q) = ' = Ce$k+j(o;q) 

Ce2k+l ($iq) = ' = Ce2k+q(i$q) 

fe2k+l (';q) = 0 = Fe2k+l(o;q) 

Y, (n> = y;(n) = -1 

Y;w = 0 

(v1,60 ii) 

Se2n+l (O;q) = 0 i Se2n+,(O;q) 

se.&+,($;s) = 0 = Se.&+, (I$;91 

ge&+,(O;q) = 0 = Ge&+, (O;q) (VI,60 iii) 

Y, (n> = y;(n) = -1 

Y,W = 0 
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II 1111 I II I III I I I II II I 

b)n = 2k + 2: 8e2n+2(O;d - 0 = Se2n+2(Oiq) 

-2n+2(fi9) = 0 i Se2n+2(i+4) 

ge,jn+2(O;q) - 0 - Ge;n+2(O;d (v1,60 iv) 

Y2(“) = 0 

According to (VI,57), it is sufficient to know ten, sell, Cen and 

Sell within (0,;). 

The functions ten and aen are normalized as follows (Ref. 19: 2.71, (4)): 

2T 29 

/ 
ceE(x;q)dx = $ aei(x;q)dx = x, (VI, 61) 

0 0 

rhich yields: 

(VI, 62) 

(6.2) Discussion of the Computation Process; Flow Diagrams 

(Floriani Dietmar) 

(6,21) General remarks: 

(6.211) All together, the following nine programs vere written in the 

courae of the investigations concerning the applicability of Lie 

aeriea formalism to the Mathieu differential equation: 
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4 programs for computation of Yathieu functions by means of 

Lie series (AA, AD, AC, AD) 

1 program for computation by means of Fourier aeriea (CA) 

1 program for a combination of Fourier and power seriea with 

respect to q (DA) (see, e. g.: Ref. 22: 2.13,(2)-(15)) 

3 programs to c&loulate the eigenvalue A of the Mathieu 

differential equation. (BA, BB, BC) 

In the following, let us discuss AC, AD and BC in detail. Remarks 

on the remaining programs are to be found in (6.4). 

The purpose of the work was to master completely the computation 

of the Mathieu functions. The solution given by equ. (VI,18) to (VI,21) 

is, above all, suitable for computing the fundamental system (VIb50). 

If one masters the computation of the eigenvalue A the functions ce, 

se, fe, ge and Ce, Se, Fe, Ge can be computed from (VI,59) except 

for the normalizing factor (~1.62). The main purpose of this work was 

to examine the usefulness of Lie series to calculate Mathieu functions 

of the first kind and of integral order. From (VI,57) follows, that it 

is sufficient to know this functions within (0,:). This result was made 

use of with coding the equations (VI,18) to (VI,21). Because of the 

Floquet theorem 

v(u+n) = u.v(u) (VI,631 

the restriction to (0,:) is also valid for any Floquet solution 

satisfying (VI,53): 

v, (X-U> - u.v,(u) 

V2(“-U) = -a.v2(u) 

or9 with u--c ;-u : 

v, ($+u) = &V&U) 

v&4 = -u.v2(~-u) (VI,641 
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(6.212) While the programs AA to AC only served to compute the ordinary 

Yathieu functions and expansion was only performed in the neighborhood 

of x - 0, in AD the equations (VI,20+21) were programmed in complete 

generality using (VI,47,48,49). The recurrence formulas for the 'PPts 

then read as follows: 

k-l 
Y 2k+2bo) = (2d&4a>ke (-4')-%2k p + ho.Y2, , 

k-l 
Y 2k+3bo) = (2q6)*(-46)k* (-46)-P.~2k+l p + , 

+ (2q6).(-46).(2k+l).A.ak + ho.y2k+l 

rith 

'2k+l,p - 

and 

B = cos 2x 

b-965) 

(vI,66) 

(VI,67) 

y3 = vo.h; = vo. (2s6).(-46)-A (J’I,66) 

In contrast to AA, AB, AC, we expanded also in the neighborhood of 

the points x = 2 45’. While dealing with the individual programs 

we found it desirable to be able to influence the course of the 

program during the computation process, in a still more pronounced 

way. This intention was taken into account in AD to a rather great 

extent. 
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(6.213) Short description of AC and BC: 

With AC, only expansion round x=0 is carried out. In this case, 

the equations (VI,20) simplify to: 

k-l 
Y 2k+2 = (2d-(-4)k- & (-4)-p=~~~~.(‘92p+vo~~~~ + 

+ (2q-A)-y2k 
(VI,C’m) 

k-l 
Y 2k+3 = (2s>4-4>k- (-4)-P.(~~=:).(Y2p+l+v~~h~) + 

+ (2q-X)ay2k+, 

Furthermore we have: 

Y3 = 0. (VI,68a) 

(VI,65a) is essentially faster to calculate than (v1,65). For v. = 0 

a11 '2k+2 = 0, for v; = 0 all Y 2k+3 = 0. Corresponding inquiries were 

built in in AC, a fact by which the computer time becomes less than 

half of the time needed for (v1,65) in AD. 

(6.214) By the appropriate choice of the conditional switch a more or 

less large number of provisional results can be put out, e.g.: the 

YpboL each (u-uo)‘.Yp/p! or only the last two Yp(uo), (u-~~)~.Y~/p!, 

A(u), R(u), A’(u), R,‘(u), th e most little terms in the sums for R(u); etc. 

Usuallytheyare useful items of information to estimate the accuracy of 

the final results v(u), v'(u). 

(6.215) BC: The machine jumps to BC with "GO TO: (EIGWE)". Unfortunately, 

our mastering of the eigenvalue calculation is not sufficient. 
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By lack of time we could not deal with this problem, any more. At 

first, we make a preliminary and approximate calculation of A 

by meana of power series with respect to q. (See, e.g., Ref.l9:2.25). 

In Ref.23 besides radii of convergence the following equation is 

given for the error estimates: 

k<(l!qm+l .(I- Liz)-‘/‘.(Bp2 
Ank'q p, n- 

2.o2k l/2 
n) (VI,69) 

k-m+1 p: 

For this equation a program was written. The extension of BC aimed 

to the following purpose: If the error limit put-in is exceeded, 

the computation of the eigenvalue is to be continued by a continued 

fraction. We consider that as transgressing our problem, by far, 

and, therefore, we did not deal witi: this problenl, any longer. 

(6.22) Short Description of the Computer we used: 

The ZUSE Z 23-V digital computer of the computer center of 

Innsbruck University was available to our investigations. The 

machine possesses 250 quick access storage registers and 8200 

registers on a magnetic drum. Several difficulties in coding were 

due to the rather limited range of the quick access storage. 

As regards the representation of numbers, we distinguish, as 

it is uaual, between floating point numbers (= GKZ, symbol: x, 

= REAL in ALGOL) and fixed point numbers (= FKZ, symbol: x1, 

= INTEGER in ALGOL). The FKZ representation is only possible up 

to lOI , GKZ representation between 10 -39 and 1039. Output is 

performed by means of a teletyper: 
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n ZVB (n line feeds) 

n ZWI (n intervals) 

n SPA (n column jumps) 

PRINT (output of data) 

or by means of a quick puncher for tapes: 

n ZVB2, n ZW12, 

n SPA2, PRINTP. 

In what follows, the accumulator is denoted by '*A". For arithmetic 

operations in GKZ-representation an auxiliary storage with address 6 

(in the following: IlS") is needed. n means the address of the storage 

(ns255: quick access storage, n>255; drum), (n) its contents. 

Furthermore, a conditional switch with the address 14 is available. 

It is adjustable between 0' and 31’. 

(6.23) Program MNVM-AD for Computing the Ordinary and Modified Yathieu -__--. -_ I 

Functions by Means of Lie series: -- 

(6.231) This program has been stored from 3000 and essentially consista 

of eight steps: 

Lf the!::AB)' 

Clearing of storage registers 

;I 
Summarizing output (printing) 

Partial determination of the 
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c 
Conditional jump to an 
expansion around a new point; 
if needed, computation of 

the 'P 

(FORT) 

62 Inquiry if y(x) 
for another x? 

yes not 

. 
/(ERGAN)\ 

Preparations for the 
computation of y(x) and 

Y'(X) 

1 “FEE? (STOP) 

(NON) 
Normalization 
of all y(x) 

(6.232) The data which are to be put in were classed in three groups: 

a) Data which remain equal in a rather great number of calculations: 

XA' 6x, XE. 

b) Data varying comparatively often: q, A. 

c) Data which always have to be put in again: v(u=O), vt(u=O), the 

number of terms N, the parameter 6 (ordinary or modified Mqthieu 

functions), printing program. 

Accordingly, the data (a) and (b) are taken over into two different 

registers for the calc,Alation and are always available for new 

calculations again. 

(6.233) Storage plan: 

(a> xpI = (252) 

6x = (253) 

XE = (254) (2x,> 
(b) A = (250) 

9 = (251) 

Input may be carried out in- 

dependent of each other as FKZ 

(degrees) or GKZ (radians) 
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(cl (14) 1 (237) (238) vo=(248) v;=(249) (255) 

0’ 0 0 are read in 0 
1' +l,- +l,- +l,- 0 0 

2' +l,- -l,- 0 +l,- 0 

3’ +l,- 0 0 +l,- +l,- 

6 - (239) - +l,-: ordinary Yathieu functions 

- -1,-t modified Yathieu functions 

(236) - 0: quick printing: only xw, I:, y(xw), y’(x,) 

(236) - +lt partial printing: some intermediate results 

additionally 

(236) = -1: complete printing: all interesting intermediate 

results are printed. 

(255) - 0: printing, as explained above 

(255) = +l: for the purpose of comparison with a less customary 

form of the Mathieu equations 

d2 y(t) + e.(l+k.cos t).w(t) = 0 
dt2 

2.y(xo) will be put out, additionally. 

For a simplification of the calculation we have additionally put in: 

(233) = 180,-s (234) = +I,-, (235) = 1032. 

The binomial coefficients are computed by addition in each last line 

of the Pascal triangle; the Ypls are stored from 4000 onwards and 

transferred into the quick access storage by block transfer. 

(En, = (‘;:;I + c2;-‘1 - (5o+P) 

( 2n+l 
P ) = (;",I + p = (15O+p) 

yp = (15O+p) 

yp = (5o+P) 

IP 
- (4ooo+P) 
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Additionally, we store for the purpose of normalizations to be 

undertaken later on: 

X r = (4099+2r), 

y(x,) = (4100+2r). 

(6.234) Normalization: avoid the laborious calculation of the 

normalization factor from (v1,62), up to now we have always calculated 

the corresponding solution of the fundamental system (VI,5O) for 

(q,A> (e=g-, like Morse-Feschbach, Ref. 21) and afterwards normalized 

by putting in a given value ;(m;q,A). 

-.-mm--..--. , , , ,, , 



Flow-Diagram to HNVY - AD 

TO: 2995-2999 
TO: 17-247, 255 

' Q UND LAMBDA EINLESEN: 
(14)=0: JA, (14)=1: NEIN" 

-STOP (to check 14), PItIm: (14) 

(14)=0 1 (14)-l ] 
I I 

1 
, PRINT: (251) r 1 ZVB 

"LAMBDA:", PRINT: (250) PRIKL': "Q:", READ: q 
1 

PRINT: q, q TO: 251 
PRINT: "LAMBDA:", READ: A 

,I ZVB PRINT: A, A TO: 250 
PRINT: "ANFANCSBED: (14)-O: TERDEN 

bTOP (To check 14), PRINT: (14) 

(l4)=0 1 (14)=1 1 (l4)=2 1 (14)=3 1 
I I I II 

I I - I c I c I- 
READ: y(x=O), TO: 248- 

7 
READ: y+=O), TO: 249 

+1,- TO: 237, +l,- TO: 237, 
249 249, 255 10 TO 237, 238 -l,- TO: 238 238,246 

0 To: 248 
,O TO: 

t 
1 ZVB 
PRINT: "(14)=0: MOD. MATH.F.EN; (14)=1: GEW. MATH.F.EN"e 
STOP (To check 14), PRINT: (14) I 6 (see equ. (18)) 

(l4)=0 1 ] (14)=1 1 
1 c 

[+-TO: 2391. (+l,- TO: 2391 



/(BFiGIN)\ 
(252)~ xA TO: 242,245 
(253t)- bx TO: 243,246 

(254)= IS TO: 244,247 

1 ,-.1032~TO: 235 
I + 

TO: A, GO TO: (BCGRA), (A) TO: 

I - (245) = x4 TO: 241 
(242) t xA TO: 240 

1 co To: (AHGAB) 

b 
PRINTP:"YODIFIZIEBTEI 

MATHIEUFUNKTIOl?E)I" 1 

PRIKl?2: "Q:", PRINl'2: (251) 
PRIFl?2: "LAMBDA:", PRINT 2: (250) 1 ZVB2 
PRINT2: "X-ANFANG:" 
PRIRTP: "DELTA X:", 

PRINT2: (245), 
'PRIN.C2: (246) ! 

,PRINT2: "X-END:", PRINT2: (247). 
1 ZVB2 

(232)=+1,- 1 (232)=-i,- 1 I I 
10 ZWIP, 
PRINT2: (242) 
PkINT2: "DELTA Xx" 
10 2x12, 
PRINT2: (243) 
PRINTZ: "X-Em: " 
10 Zw12, 
PRINT2: (244) 
2 ZvB2, 
GO TO: (VORB) 

--I 
IGO TO: (VORB) 

bols of the program 
used for camp., e.g 
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160 TO: (UMNOT) 1 

y(o) TO: 142, y'(o) TO: 143 
GO TOS(ABFR), 
A TO: 130 

1-1l A)=O? + 

1 
12 ZVB, pRINT: "ENTWICKLUNG" -1 

3 TO: 140, 141 

/(ERGAN)\ 
(231)'+11 = rf+i' TO: 231 
GO TO: (XNULL), GOTO: (GRABO), 

IGO TO: (EF~GAIV>[ 

"EMlS'WICKLUNG", PBIHT: "UN" I 
XNULL) 
A), (A) TO: 140 

(ERGAN) 

89 



TO: 351 

= cxE +3- x,)-(35) TO: A 

1 + (A)tO? - 

[GO TO: .(NORM)l 
1 

STOP 
1 GO TO: (UlKN3T) 

/(NORM) \ 
2 ZVB 
PRINT: "NOUIERUI~GI (14)-O: REIN, (14)=1: JA, X-GRAD (14)=2: JA, 

X-BOG.YASS; 
STOP (To check 14), PRTNT: (14) 

1.) x 2.) Y(X)1 

1 
i-1(14) = O? 1 + 1 

1 
tl ZVB 

. 
1 

AD: xN' PRINT: xN, xN TO: 41, 43 

PRINT: f, y' TO: 42 

GO TO: (STOP) 

[(36) + 2 TO: 36 
r - [\((36)) a (4J)l40-+-\ 
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PRINT?8 ((35)+1), (35)+2 TO: 35 
((35))*(45) - Y(I,).W<-5) - F(fJ ‘To:- $ 
PRIRl'Pr (A),,1 SPA2 _ 

GO TO: (STOP) 

PRINT: "ENDE" 

gunctions of the subprograms used -for MNVM-AD: 

(EICWE): 
(A~DR) : 
( GRABO) : 

(BoCRA): 

(ABFR): 

(XNULL): 

(KORST): 

(GEAHL): 

(GERAD): 

(KLAMI): 

(KLAMA) I 

(PHISU): 

(BIN~M): 

(xUFAK): 

Berechnung des UenWJrtes (Calculation of the eigenvalue) 
Wahl des AUSDRuckprogrammes (Choice of print program) 
Veruandlung von dmaI3 
radians) 

inBOgenmaB (Change of degrees to 

Vernandlung von BOgenmaC in udma0 (Change of radiana to - 
degrees) 

ABFRaqe, ob Umentwicklung (Inquiry whether expansion around 
a new point is needed) 
Berechnung des Punktes x0, um den zu entricktln ist 
(Calculation of the poix x0 around which expaneion has to 
be carried out) 

Berechnung von KORSTanten (zur Phi-Berechnung) (Calculatisn 
of constants (for calculating phi)) 
Eingabe der ZAHL der verwendeten glieder (Input of the 
number of te=used) 

Abfrage, ob (A)' = 2k' ( Inquiry if (A)# I 2k’) 

Berechnung der Inneren umern ( Calculation of the 
internal brackets) 
Berechnung der d_euBeren KLAMmern (Calculation of the oxtern& 
brackets) 
Fuer ein m AufSJnmierung der Rek~sionsformel (Summatls8 
of the recurrence formulas for one phi) 

Berechnung einer &-Potenz End einer uultaet (Calculation 
of an x-power and of the corresponding factoriale) 91 
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(mp): 
(NiEH) I 

(KORR) I 

(ERG.) : 

(DRuCK): 

(MIBMA)r Bestimmung dee mimalen und des aximalen Gliedee. 
(De~~ermSnation of the minimum and maximum term) 

(AXFAK).: Bereohnung Aller, &-Potenzen und aller FAKultaeten 
(Caloulation of all x-power8 and all factorials) 

(SG'MEE): Bereohnung der STJWE aller Glieder (x-x )p.Yp/p! 
'(Calculation of the suq of all these ter&) 

Beichern (Storing of the intermediate eums) 
Berechnung der BAEHerungsloesung (= ohne Korrekturglieder) 
(Calculation of- approximate solution (without 
correction terms)) 
Bereohnung der 

Y 
ekturglieder (.Calculation of 

correction terms 
Berechnung der sebnisee: y(x) und y'(x) (Calculation of 
resulte)' 
1)RUCgen der Ergebnisse entsprechend (AUSDR) (Printing of 
reeulte according to (Au~DR)) 
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3'lpw-diagrams of the Subprogrrms to W&AD: 

(AUSDR) 
1 ZVB 
PRIiJT: "AUSDRUCKEN: (14)=0: 
RASCH, (14)=1: TEILtiEISE, 
(14)=4: VOLLSTBENDIG" 
STOP (To check 14), PRINT: (14) 

(14)=0 1 (14)-l 1 (14)=4 

/(GRABS)\ 
-j + l(A)-O?l - 1 

4 
[(A) TOI 34[ 

+ (A)=cxc~? - 
1 F c 

1(34) TO: AI +(A) TO:A,S' 
7 

v RETURN 
(A) TOI S 
RETURN 

j(k9F3)\ 
+ x $-45O? - 
1 

-l,- TO: A,S 1 
RETURN -i - !xw>+450? + 

10 TO: 
1 1 
A,S 

~RXCURIT 
+1,- TO: A,S 
RETURN 



/(GzAHL)\ 
If ZVB 
PRINTx 'IIEVIELE GLIEDER: 

ST0;'(;0':;1:0:~;4) 
A'X" 

PRINT: (14)' 
10.(14)' TO: 34 
PRIhTc "B':", STOP 
?RINTr "N'=" 
(34)'+(14)' TO: 34 
PRINT: (34)' 
RETURN 

[(GERAD)\ 
(A)' TO: 34 

(A)‘:2’ TO: A,S 
- l(Arl=2kl?l + 

1 I 
-l,- TO: A 
RETURN 

/(-@I 
2.(37)=2~ TO: 41 

(lj4)(37)=hp TO: 40 
0 

(35)=n=2k+2 (35)==2k+3 

1 i 

((41)+50) = (ii) TO: S 

(136).(38) 

((41)+150) = (2;;') TO: S 
= B.aQ TO: A (733).(135).(38) = (-46).A.ap TO: A 

(A).(S) TO: 42 (A).(S) TO: 42 
((41)+51) = t2;+kl) TO: S ((41)+151) = (;;I:) TO: S 

(135)-(39) = A+, TO: A (136).(39) = B.p, TO: A 
(A).(S)+(42) = y2k,Q TO: 42 (A).(S)+(42) = Y~~+,,~ TO: 42 
REiTURN RETURN 
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/(PRISil)\ 

(35) TO: A 
co TO: (GERAD) 

w=k TOr 36 

0 TO: 37' 
+l,- TO: 43 

0 TO: 44, 
1 

-Go TO: (KLAMA) 
(S)r(43) = (-46)-'my.+ TO: S 

(S)+(44) TO: 44 
(43).(133) = (-46)'+' TO: 43 
(37)+1 = q+l TO: 37 

+ 1 (37)((36)=k?I - 1 
I 

= (-46)k TO: S 

(132).(Sj.(44) = (W).(-46>k. 
k- 

t TO: 44 

O (35) To: A, Go TO: (GERAD) 

(A) = -l,- (A) = +l,- 
I 

1 
;134).((35)+48) = ho.Y2k+, TO: ii 
(5)+(44) TO: 44 
GO TO: (KLAMI) 

I 
35)-2 = 2k+l TO: S 
132).(133)~(S).A.(38) = 

= (2q6).(-46).(2k+l).A.ak TO: S 

v 
(134).((35)+148) c ho.Y2k TO: S 

(S)+(44) = Y2k+2 TO: 44 
, 

L 
(S)+(44) = Y2k+3 TO: 44 

* v _ 
(44) TO: 4000+(35) = 

= 4000+(2k+3) 
RETURN 
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1 ,- 1 (A)=+l,-1 4 5’ “‘, 
r -pi 1 TO: 371 

1 (36) TO:A 

(37)'+1' TO:37 (37) '+I ' TO: 37 I 

/(XUFAK)\ 

4. L 
] + [(47)q(3g)t ?I - 1 

1 

(36)' AS GKZ TO: 37 
(141) = (x-x,) TO: S 
(38). 3; TO: 38 

74 
(36) '+I' TO: 36 

- [(36)7(35)?1 + 

I 
(36)' AS GKZ TO: 37 

(38) .w = (x;:o)l 
l yP To: 3g 

RETURN 
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+ 
(142) = v. .TO: A 1 

t 
A).(421 TO: 44 
143) = v; TO: A 

I RETURN 

/(ABE@\ I 
(141)~.(144)=(x-~~).~h~ TO: 42,43 

(131)~-I,-(=TRIG.)[ (131)=+1,-(=HTP.) 
4 1 
TO: 42 
TO: 43 

- 
(35)'+1' TO; 35 

(230)' = N TO: A 
- j'l35)'<(A)'?I 
1 

(RETURNI 

Imw \ 
(40)+(38) TO: 40 
i;;&i39) TO: 41 

~(35)'~' TO: 371 (35)'+1' TO: 37 
l--l 

-7(37)'< (36P?t + 

@azJ 

Go ~0: (KORR) 
Go TO: (NAEH) 

(40)+(44) = Y(X) TO: 38 

(255)=+1,- f (255)=0 
I I 4 

2.(38)=2y(x) TO: 37 
I 
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1 
GO TO: (AXFAK) 
(48)' TO: 35 

IRETURN 

GO TO: (SUMME) 
GO TO: (TJMP) 

I 1 z; 
‘-1’ TO: 35 
’ TO: 36 

GO TO: 
I 
SUMME) 

GO TO: mp) 

4 
- 1 l'&(@)'? 1 + 

(36)1-l’ TO: 36 
1' TOI 35 
GO TO: SUMME) 
GO TO: UMSP) 

, 4 
IRETURN+- 

1 ZVB2, PRINT2: "X-ARBEIT:" 
;;I'M;: (240), (241) 

"GLIEDERZAHL:" 
PRINTPi (230) 
(236)=-l,- 1 '(236)=+1,- , 

i 
11 ZVB2, 0 TO: 35 

;;:I-.&: (240)) (241) 
: (38) 

+ (2551=0? - [ L 
PRINT2: (37)l 

1 

*1 ZVB2, PRIFlJ2: ((230)+3999) 

((35)+50)1 
1 ZVB2, PRINT.2: (46), (47) 

I+ 1 (35)'((230)'=N?i -l--PRINT2r (44), (40), (38) 
6 

1 + j(255) = O?l - [ 
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(6.3) llumericsl Reeults 

(Florisni Die trar) 

(6.31) In order to demonetrate the usefulness of the Lie series method, 

we reproduce four examples, the ordinary functions se,, ce2, ce 3 and 

the modified function Ce 4. As told above, we calculated the fundamental 

eyatem (VI,50)(ike Ref. 21). If a value normalized according to 

(v1,62) was available we multiplied our results by the normalization 

factor I(~)/Y(~). 

Explanatione referring to the columnar 

1) Ce4x Column 1: x in radians 

Column 2: y(x); below the normalized value (oee 
remark); below, the value of comparison from Ref. 24. 

Column 31 y'(x) (not normalized) 

Column 4: Order of magnitude of the smallest term used in the 

mm (VI,39).((-n) means 10sn, of course) 

Column 5: The same for the derivative of (VI,jq). 

The values p(x) were obtained by normalizing y(x=O,l) to 1,133O 

(taken from Ref. 24). Consequently, the values y(x) of the second 

line of column 2 may be wrong from the fifth digit while the 

tannormalized values y(x) (in the first line) have the original 

accuracy. 

2) ce3: In this example the values of y(x) and y'(x) are not normalized. 

Column 1: x in degrees 

Column 2: y(x) calculated for 30, below it for 17, below it for 

10 terms, in(39);belon these values, the value from 

Morse-Feshbach (Ref .21) is given for the sake of 

comparison 

Column 3: The same for y'(x) (without value for comparison) 

Column 4, 5: as in 1) 
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0 

091 

092 

093 

094 

095 

096 

097 

098 

099 

190 

,100000000/+01 

,100519363/+01 
,1133ocooo/+o1 
,I1330 /+Ol 

,101676300/+01 
,114604036/+01 
,11460 /+o 1 

,102231891/+01 
,115230268/+01 
,I1523 /+01 

,100052404/+01 
,112773668/+01 
,I1277 /+Ol 

Ce4(x; 10) 

,921920767/+00 
,10391393~/+01 
I 10391 /+01 

,754107536/+00 
,849989300/+00 
,a4996 /+oo 

,475140199/+00 
~;;;;;'""/+"O 

/+oo 

,974910743/-01 
,~OYSS6675/+00 
, lo988 /+oo 

-,302955275/+00 
-,341474f=Y/+OO 
-,34146 /+oo 

-,575802785/+00 
-,649013f311/+00 
-,64899 /+oo 

0 

,972570370/-01 

,113613849/+00 t-29) 

-,381249934/-O? C-23) 

-,447630695/+00 

-,118059090/+01 

-,221632845/+01 

-,334757849/+01 

-,408189917/+01 

-,366yly362/+01 

-9 i47121582/+01 

(-37) 

(-19) 

C-15) 

C-13) 

C-10) 

C-40) 

l-27) 

C-19) 

(-36) 

C-27) 

C-31 1 

(4) 

C-13) 

C-11) 

(-09) 

C-40) 

C-23) 

6-q 
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0’ 

10’ 

20' 

30' 

40' 

50' 

60’ 

70' 

800 

900 

,100000000/+0~ 

,g18721565/+00 
,918721565/+00 
,918721565/+00 
,9187 

,689 985475/+00 
,681985475/+00 
m~85379/+"" 

,317080590/+00 
,317080587/+00 
,317068498/+00 
9.3171 

-,115417896/+oo 
-,115418488/+00 
-,115783378/+00 
-,1154 

-,51511995d+oo 
-,5lTl34036/+00 
-,5wog426/+oo 
-,5151 

-,758697177/+00 
-,758725800/+00 
-,764743045/+00 
-,7587 

-,746682435/+00 
-,746715920/+00 

-,461980548/+00 
-,462006955/+00 
-,466545243/+00 
-,4620 

,372529029/-08 
-,34709461o/-04 

:;;;;38250/-02 

0 

-, y25242223/+00 
-,g25242223/+00 
-,925242225/+00 

-,176294217/+ol 
-,176294217/+01 
-,176294546/+01 

-,236160093/+01 
-,236160105/+Ol 
-,236187557/+01 

.- , 249712071/+01 
-,249713584/+0l 
-,25o329561/+ol 

-,1Y6064023/+ol 
-,1g6o74153/+01 

(-38 

-,lgeo43166/+01 
(-20 
(-11 

-,729353347/+00 
-,729413240/+00 
-,740099783/+00 

,886775360/+00 
,8F.6782194/+00 
,890114724/+00 

,228150895/+01 
,Z28157557/+01 
,230532689/+01 

,2@447515/+01 
,283401283/+01 
,231895629/+01- 

(-28) 

(-07) 

(-19) 
C-04) 

(-14) 

l-03) 

C-10) 

C-02) 

-15) 
-06) 

(-02) 
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3) a=, 2 and cc : 

Column 1: I in degreee 

Column 2: y(x); below the 6ame quantity norrrlisod rooording to (VI,62) 

(Bee remark) 

Column 3: y’(x) 

Column 4, 5: ae in 1) 

In order to normalize 88, and ce2 we took eight-digit-valuea 3 rt 

r-90' from Ref. 42. Before thie we estimate the accuracy of the 

normalized value8 to seven digits. 

se,(x;5) 

0’ 

10’ 

20. 

300 

40' 

500 

609 

704 

800 

go.* 

0 

,1886~5561/+00 
,3296o4726/-01 

,466132532/+0( 
,814218865/-01 

,935811049/+00 
,I63463 169/-00 

,1710631~6/+01 
,298805182/+00 

,286744961/+01 
,500872908/+00 

,436030518/+01 
,761638o51/+00 

,594110387/+01 
,103776470/+01 

,718?40068/+01 
,125458871/+01 

,765668132/+01 
,133743390/+01 

,100000000/+01 

,124535882/+01 

,203286757/+01 

,346129214/+ol 

,549981492/+01 

,772154247/+01 

,914730588/+01 

,854072594/+01 

,524849689/+01 

,178813934/-06 

(-37) 

(-25) 
. 

t-191 

C-14) 

t-401 

t-25) 

(-18) 

t-131 

(-09) 

(-34) 

c-23). 

l-17) 

C-13) 

(-39)' 

c-23) 

t-16) 

C-11 1 

C-07) 
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cdx;5) 

00 

100 

200 

300 

400 

500 

600 

70' 

800 

900 

,100000000/+01 

,103753674/+01 
,762894862/+00 

,113347289/+01 
,833436165/+00 

,123284138/+01 
,906501253/+00 

,w796996/+oI 
,glo272267/+oo 

,103168567/+01 
,758592604/+00 

,549803003/+00 
,404267041/+00 

-,124341227/+00 
-,914273966/-01 

-,736175131/+00 
-,541305,384/+00 

-,985303635/+oo 
-,724488154/+00 

0 

,414834533/+00 

,632857185/+00 

,410750603/+00 

-,196454071/+oo 

-,398760686/+01 

- ,3725?9029/-07 

(-35) 

(-24) 

t-18) 

(-13) 

(-40) 

(-25) 

(-18) 

(-13) 

l-09) 

(-33.) 

(-22) 

C-16) 

C-12) 

(-38) 

C-23) 

l-16) 

(-11) 
: : 

(-07) 

(6.32) Remarks on the results: 

We had everywhere the expressions (~-x~)~.P,/p! printed out. Thue, 

it turned out that they rapidly decreased with increasing p, in our 

examples. It Beeme., therefore, to be obvious that in thoee domains 

of the (q,X)-plane in which this decrease irr rapid enough the error 

caused by breaking-off the mm (VI,jq) is of about the 8ame order of 

magnitude as the smallest (or last) term used if no error of higher 

order of magnitude is superimposed, e.g., by repeated analytical 

continuation. Since we expanded in the neighborhood of 0' and 45', 
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the values of 'columns 4 and 5 should give useful hints to an estimate 

between 0' and 45' and in the neighborhood of 90°. 

Unfortunately, no tables with more than 5 digits were available 

so that we could merely estimate the accuracy of the remaining digits.. 

(Ref. 42 contents only single values y(x;q,X) to certain paire of 

(q,A))* 

Consequently, the results at the boundary of the interval were 

specially significant for judging the efficiency of the method. 

From (v1,60) follows: 

ce,$(x/2) = 0 

sei(n/2) = 0 

ce3(n/2) = 0 

whereas our values are: 

ces(x/2) = -,372.../-07 C-07) 

se;(n/2) = -,178.../-06 C-07) 

ce3(n/2) = ,372.../-08 (-09) N = 30 

= -,347.../-04 C-04) N = 17 

= ,375.../-02 (-01) N = 10 

(N means the number of terms used to calculate the sum (VI,39)). 

The agreement is rather satisfactory, above all, if we take into account 

the fact that x-x0 is already rather great, namely 0,8. In the case 

of repeated analytical continuation the result should still be better 

whereas the computer times remain comparable. Besides, the values of 

the 4. and 5. column yield surprisingly good estimates in the case 

considered. 
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(6.4) Discussion of the codes; Possibilities of Improvement and 

Extension 

(6.4l) The program HEVH-AD: 

The programs for calculating Yathieu functions by means of Lie series 

mere intended to become acquainted with the possibilities and 

limitations of this method (accuracy, domains of rapid convergence, 

necessary number of terms) rather than to yield computer times as 

short as possible. Accordingly, AD was arranged so that the run of 

the calculation could be influenced to a ride extent (e.g., the input 

of a new number of terma with "GO TO: (GZAHL)") while some clumsy 

actions, as, e.g., the complete calculation of the 'Po(x=O) instead 

of using those already calculated, mere not eliminated, partly by lack 

of time, partly since only the computer time was increased, by that. 

In an improved program, analytical continuation would have to be 

possible in the neighborhood of arbitrary points. For this purpose, 

a reasonable, i.e., theoretically well-founded and numerically useful 

estimate of errors would be needed if one does not rant to give the 

step size completely arbitrarily. 

Another promising ray of further improvement is a method which has 

been elaborated here, at Innsbruck, by H. Knapp (Ref. 10 to Ref. l?), 

i.e. using rearrangement of the series and iteration processes. 

(6.42) The other programs: 

The programs AA, AB are preliminary stages of AC and AD; in the same 

ray, BA, BB are preliminary stages of BC. 

The comparison program CA for the representation by means of Fourier 

reries was, again by lack of time, only sketched and is not yet ready. 
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DA, however, was completely worked out. As it was to be expected, 

the results were satisfactory only for rather small q. Consequently, 

this program could not be referred to for purposes of corpariaon. 

Conclusion: 

In the exact calculation of Yathieu functions also the use of Lie 

series is accompanied by certain difficulties. However, investigations 

carried out at Innsbruck in the last few years have shorn that these 

difficulties can be avoided to a greater extend, e.g., by rearrangement, 

iteration processes, etc. For less accurate calculations the method 

is thoroughly appropriate in the form described above. 

The fact that the Lie series method yields satisfactory results, alao 

in the comparatively unfavorable case of Mathieu functions suggests 

that it might be appropriate also for calculating the other special 

functions of mathematical physics (see chapter VII). 
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Chapter VII 

The Numerical Calculation of Weber Parabolic Cylinder Functionr, 

by A.HBHETT and J.WEIL. 

From a separation of the Helmholtz equation 

n Q (Ps~,Z) + x2+,Y,z) = 0 (VII#l) 

in parabolic-cylinder coordinates, we obtain the following 'three 

equations: 

+ ajp2)M = 0 

d2N 
- +(a2- 
dv2 

a3V2)N = 0 

d2Z - + (x2 + a3)Z = 0 
dz2 

(n1,2) 

the first two of which are solved by Vieber parabolic-cylinder func- 

tions. 

As it is well known these equations have already been investigated 

extensively: 133, and references given there/, 1341, 1351, 1361, 1371, 

1381, /391. 

We are going to present a short review of all three formulas represen- 

ting the solution of the general homogeneous linear differential 

equation derived so far - all of them based on Lie series formalism. 

These equations are of the general type: 

Y"(t) - f,(t)Y'(t) - f2(t>Y(t> = 0 (VII,3) 
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which ir converted into a first-order system in the usual ray and 

rolved 

The first formula representing the solution - on rhiah the numerical 

oalculrtions are based - reade: 

Y(t) - g $ g (",') (f,(e)(yo)D3-"ey, + 

+ f2(e)(yo)DJ-2-ey,) + y, + ty2 (VII,4) 

Evidently, this formula is a recurrence formula for the powers of 

the D-operator; following a ray proposed by Prof.Cap, we gave an 

alternative formula obtained'by splitting off given functions (tri- 

-gonometric and hypei?bolic) from the total solution, e.g.: 

z(t) = z2 l 

1 

2 t2f, 

fl 

cash (tf,) - 1 - :.2 (tf12) -1-2 

3 

4 

c 

Of, I3 f2 
+ z2 i 

1 
sinh (tf,) - tf, - 7 -1 [ + z1 2 sinh (tf,) - 

- ti, (tq2) - tv2 - 

+ 
z 

tP 
e- el 

epGo’ z,, 2.2’ f,, f2> + z, + tz2 

The third formula (see chapter III, Eq.(III,6)) consists of a main 

term and a perturbation integral which can be evaluated by iterations: 
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In our case, Eq.(VII,4) f or which the co+e was written reduces to 

a simpler form as f, = 0 and f2 = (a + bt2.); consequently, Eq.(VII,h) 

becomes: 

j(t) = z $! [(-a-byi)D*2y, + (u-2)(-2byo) 

Du-3y 
1 

+ (u-2)b-3) 
2 (-2b)D'-4y, 

I 
+ y, + ty2 

According to /33/, we write the two equatione leading to Weber' 

functions in the following form: 

Y"(t) + (; t 2 
- a)Y(t) = 0 

Y"(t) - ($ t* + a)Y(t) = 0 

(nI,5) 

On6) 

(VII,7) 

1.f.) the conventional ways of solutions requi e a disjunction of oases 

which are simultaneously contained in the Lie formalismi this is one 

of the advantages of the latter method. To start with, we will treat 

Eq.(VII,6); 

a) The solution of Eq.(VII,6) is given by: 

Y = AU + BV (VII,81 

where U, V are two independent solutions and A, B constants. 

a) In the well-known series representation /33/ we have: 

U(a,t) = D-,-l(t) = cos n (i + $ a)Y, - sin T[ ($ + 3 
2 

a)Y2 

and 

V(a,t) = ' 
f (+-- a) t 

sin 7t ($ + + a)Y, + co9 lI ($ + $ a)Y2 
>- 

with 
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and 

y,, y2 are given by the following series: 

lt2 
4 I 

2 

Y, = e 1 + (a - $) & + (a - $1 (a - $I$ +.*.. 4 

and h2 
y2 = e 

4 c t + (a - $).$ + (a - $) (a - 5) $ + l *=j 
. 

which are convergent for all values of t. 

p) On the other hand, U and V are represented by integrals in 

the follorsing way /33/: 
;Lz2 -*i 

U(a,z) 
e4 

-a- -$- 

=2XiZ 5 

r(s\r(+ + a - 2s) 
(E)2sds 

-eoi F (+ + a> 

(larg zI< f 71) 

where the Contour separates the zeros of I%> from those of 

)(a + + - 2s). 

Similarly we have for V: 

* 

~~z~2s 
cos slrds 
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b) Equati'on (VII,7) is solved by: 
r 

Y(a, 2 t) = ('Osh Ira) 
4 

2P 
(G,y, ifl G3y2) 

where 

G1 = I*( i+ 4 + ia)\ 

and 

while 

=l+ a$+(a2 t6 
Yl 

_ 3) f + (a3 - z a) F + (a4 - lla2 + 7)‘s + 

and 

+ (a5 - 25a3 + - 211 t'O 
4 a> =+ . . . . . . 

(a2 - $) $ + (a3 - p a 

11 

t3 
y2 =t+7+ 

f (a5 - j5a3 + y a) $+ + . . . . . . . 

tn 

(a4 - 17a 2 !a)“9 + 4 91 + 

in which non-zero coefficients a of 5 are connected by n 

a n+* = a.a -- n ; n (n-1) ans2 

Numerical calculation: 

Evidently, we have for the solution and its derivative: 

Y(a,t) = AU(a,t) + BV(a,t) = Y,(a,t) 

Y'(a,t) = AUf(a,t) + BVg(a,t) = Y2(a,t) 
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For t I 0, the independent solutions U and V and their derivatives 

reduce to 1337: 

U(a,o) = , 
2T? + $r(t + +a) 

U'(a,o) - - , 47 

-a -- 
-22 i 

1, + 1 
r($ + +a) 

V(a,o) - 
22 4 sin I (;t - $1 

r($ - $4 

V'(a,o) = 
2+a + ;t *in ir ($ - +a) 

r(++a) 

(VII,9) 

From Eq.(VII,9) U(a,o),Ut(a,o), V(a,o) and V'(a,o) can be calculated 

for different values of the parameter a. 

Without restriction of generality, WE may choose: 

Y(a,o) = U(a,o) = y(a,o) = y,(a,o> (VII,lO) 

Y1 (a,01 - U'(a,o) = if,(a,o) = Y2(a90) (VII,") 

i.e., we have put A = 1 and B = 0; the small letters are initial 

values. 

With the help .of .(VII,lO) and (VII,,,) we may write the solution: 

Y(a,t> = 
t* 
7 D'Y + Y, + y2t = U(a,t> 

Y'(a,t) - t” 
7 D”Y + y2 = U'(a,t) 

Furthermore we choose: 
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Y(a I 0) = V(a,o> = y(a,o) = y,(a,o) 

Y’(a,o) = Vl(a,o) = y'(a,o) = y,(a,d) 

i.e. we have A = 0 and B = 1. 

Again the solution is expressed by: 

Y(A,t) = r 
Y=2 

5 D'Y + Y, + Y$ = V(a,t) 3 
Y'(a,t) = c 5 D"y + y2 =. V'(a,t) *= * 

(VII,lP) 

(VII,‘.3) 

the philosophy of this choice being the construction of solutions 

which,are tabulated. 

We now expand Y(a,t) and Yl(a,t) in the neighborhood of t - 0 and 

+?D" choose a step size of At = 0,'. As t increases more terms 7 Aat* - 0) 

have to be calculated if the accuracy is prescribed. Since the com- 

puters have a limited numerical range, only a limited number of terms 
ty DL' 
u! y(a,t = 0) can be calculated ("overflow"). Consequently, we ex- 

pand the functions Y(a,t) and Y'(a,t) at t = 0 and, using a step size 

of 'At = O,l, we calculate until Y(a,$) and Y'(a,t,) are reached. 

Y(a,t,) and Y'(a,t,) are, then expanded at t, where t, was chosen 

to be 2, in this calculation. Continuing this method, we can compute 

Y(a,t) and Y'(a,t) for arbitrary a and.t, with the accuracy wanted. 

In the following appendix, the values calculated on the basis of the 

Eqs.(VII,5), (VII,12) and (v11,13) are compared to the five digit 

values extracted from /33/. 23 t &ma of the Lie series were used for 

this calculation (it is worth mentioning that also 16 terms which were 

used in a preliminary test yielded very accurate results). The calcu- 

lation time for one value of the functions U(a,t), V(a,t), U'(a,t), 

V'(a,t) was about 3 sec. 
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Tables: In the following tables, the values of U, U', V, VI are given 

for several values of the parameter a; the column to the left and 

right are Lie series results, the central one presenting results 

taken from 1331. 

t a-5.0/t) +5.0/t) 
Lie Series Table /33/ 

0.0 ,30522 (+s'> +30522 (+ol) 

0.1 ,36547 (+o') ,36547 (+o') 

0.2 ,40753 (+o'> ,40753 (+ol) 

0.3 ~42935 (+o') ,42935 (+ol) 

0.4 ,42988 (+o') ,42988 (+o') 

0.5 ,409'S (+ol) ,409'8 (+ol) 

U'(-5.0/t) 
Lie ,Seri.es 

,68418 (+ol) 

851583 (+o'> 

,'32200 (+oI) 

,"257 (+ol) 

-,10179 (+ol) 

-,31029 (+ol) 

0.6 ,36E136 (+ol) ,36836 (+o'> -,50253 (+o'> 

0.7 ,30953 (+o'> ,3'0953 (+o') -,66912 (+ol) 

0.6 ,23566 (+of) 923566 (+o') -,80214 (+oI) 

0.9 9'5042 (+o'> ,'5042 (+o') -,89558 (+o'> 

1 .o ,57999 (+oo) r5799 (+oo) -994557 (+o'> 

1.1 -,37182 (+oo) -,3719 (+oo) -,95055 (+o'> 

1.2 -,13063 (+o') -,13064 (+o') -,91126 (+o') 

1.3 -,2'806 (+o') -,21806 (+ol) -,83064 (+ol) 

1.4 -,29554 t+o') -,29554 (+o') -,71355 (+ol) 

1.5 -,35976 (+ol) -,35976 (+o') -,56644 (+o') 

1.6 -,40808 (+ol) -,40808 (+ol) -,39695 (+ol> 

1‘.7 -,43868 (+o') -.,43868 (+ol) -,*'345 (+o'> 

1.8 -,45059 (+o') -,45059 (+o') -,24521 (+oo) 

1.9 -,44369 (+o'> -,44368 (+ol) ,16143 (+oI) 

2.0 -,41866 (+ol) -,4'866 (+o') ,33664 (+ol) 
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t u( -5-o/t 1 a-5.0/t) n+Lo/t) 

Lie Series Table /33/ Lie Seidee 

2.1 -,37694 (+ol) 

2.2 -,32057 (+ol) 

2.3 -,25208 (+ol) 

2.4 -,I7434 (+ol) 

2.5 -,90387 (+oo) 

2.6 -,33225 (-01) 

2.7 ,83870 (+oo) 

2.8 ,16842 (+ol) 

2.9 ,24789 (+ol) 

3-O ,32021 (+oI) 

3.1 ,38377 (+ol) 

3.2 ,43739 (+ol) 

3-3 ,48038 (+ol) 

3.4 ,51246 (+ol> 

3.5 ,53376 (+ol) 

3.6 ,54473 (+ol) 

3.7 ,54614 (+ol) 

3.8 ,53895 (+ol) 

3.9 952427 (+ol) 

4.0 ,50332 (+ol) 

4.1 ,47733 (+ol) 

4-2 ,44753 (+ol) 

-,37694 (+ol)- 

-,32057 (+ol) 

-,25208 (+ol) 

-,I7434 (+ol) 

-,9039 (+oo) 

-,332 (,-ol) 

,8387 (+oo) 

,16842 (+ol) 

,247W (+ol> 

,32021 (+0i) 

,38377 (+ol> 

,43739 (+ol) 

,48038 (+ol) 

951246 (+ol> 

,53376 (+ol) 

,54473 (+ol) 

,54614 (+ol) 

953895 (+ol) 

,52427 (+ol> 

,50332 (+ol> 

947733 (+ol> 

944753 (+ol) 

,49429 / +ol 

,62884 / +ol 

,73616 / +ol 

,81364 / +ol 

,86017 / +ol 

,87612 / +ol 

,86312 / +ol 

(82389 / +ol 

,76202 / +ol 

,60170 / +ol 

,58744 / +ol 

,48386 / +ol 

,37545 / +ol 

,26637 / +ol 

,16034 / iol 

,60485 / +oo 

-,30683 / -1-00 

-,11132 / +OI 

-,18021 / +ol 

-923677 / +ol 

-,28094 / +ol 

-,31311 / +pl 
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.t 0(-4.5/t) u(-4,5/t) 

Lie Seriee T.able /33/ 

U! (-4,5/t) 

Lie Series 

0.0 ,>oooo (+ol) ,300oo (+ol) 

0.1 ,29328 (+ol) ;29328 (401) 

062 ,27341 (+ol) ,27341 (+ol> 

0.3 ~24132 (+d> ,24132 (+ol> 

0.4 

0.5 

0.6 

0..7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8 

1.9 

2.0 

,I9846 (+ol) ,19846 (+ol) 

,I4678 (+ol) ,14678 (+ol) 

,88615 (+oq) ,88615 (+oo) 

,26550 (+oo) s26550 (+oo) 

-.,36676 (+oo) -,36676 (+oo) 

-,98321 (+oo) -,98321 (+oo) 

-,35576 (+ol) -,15576 (+oI) 

-,20661 (+oi) -,20661 (+ol) 

-,24882. (+ol) -,24882 (+ol) 

- ,28077 (+ol ) -,28077 (+ol ) 

-,30131 (+01) -,30131 (+ol) 

-,30982 (+ol) -,30982 (+ol) 

-,30617 (+ol) -,30617 (+ol) 

-r29073 (+ol> -,29073 (+ol) 

-,26435 (+ol) -,26435 (+ol> 

-,22824 (+ol) -,22824 (+ol) 

-,I8394 (+ol) -‘,18394 (+ol > 

,ooooo (00) 

-,13396 (+ol) 

-,26178 (+ol) 

-,37763 (+ol) 

-,47627 (+ol) 

-,55337 (+ol) 

-,60565 (+ol) 

-;63106 (+ol) 

-,62886 (+ol) 

-,59963 (+ol> 

-,54516 (+ol) 

-,46837 (+ol) 

-,37312 (+ol) 

-,26396 (+ol) 

-,14587 (+ol) 

-,24-38 (+oo) 

996448 (+oo) 

,21081 (+ol) 

,31479 (+ol) 

r40484 (+ol) 

,47824 (+ol> 

118 



t v(3*5/t) v(3.5/t) W3.5/t) 

Lie Seriee Table /33/ Lie:Serier 

0.0 ,ooooo (+oo) 

.o.l 24076 (+oo) 

0.2 ,489VV (+oo) 

0.3 ,75648 (+oo) 

0.4 s10497 (+ol) 

0.5 ,13802 (iol) 

0.6 ,176oo (+ol) 

0.7 ,22033 (+ol> 

0.8 ,272$6 (iol ) 

0.9 ,335ol (+ol) 

1.0 ,40980 (+ol) 

1.1 ,50003 (+01) 

1.2 960933 (+ol) 

1.3 ,74225 (+ol) 

1.4 ,90440 (+ol) 

1.5 ,11028 (io2) 

1.6 ,l3461 (+02) 

l-7 ,I6454 (+02) 

1.8 ~20145 (+02) 

1.9 ,247oe (+02) 

2.0 ,30364 (+02) 

2.1 937393 (+02) 

,ooooo (+oo) 

a24076 (+oo) 

,489VV (+oo) 

,75647 (+oo) 

,10497 (+ol) 

,13802 (eel) 

,176oo (ioi) 

,22033 (+ol) 

,27266 (iol ) 

,335o.l (+o’f ) 

,40980 (iol ) 

,50002 (+OI) 

,60933 (+ol) 

,74224 (+ol) 

,90439 (+ol) 

,11028 (io2) 

,I3461 (+02) 

916454 (+02) 

,20145 (+02) 

,24708 (+02) 

,30364 (+02) 

,37393 (+02) 

0,23937- (+ol> - 

r24357 (iof) 

;25634 (+oi) 

,27820 (ioi ) 

*30999 (+of > 

,353ol (+ol> 

r40900 (+ol> 

,48025 (+dl ) 

t56974 (+ol) 

,6812.6 (iol). 

,81962 ( +OI ). 

,99089 (iot) 

,I 2027 (+02) 

,14649 (+02) 

,17896 (io2) 

,21924 (+02) 

,26930 (+02) 

933164 (+02) 

,40945 (+02) 

,50683 (+02) 

,628V8 (+02) 

,78284 (io’2) 



. -, 

t v(o.o/t) 

Lie Series 

V('L.o/t) 

Table /33/ 

V'(2.o/t) 

Lie Series 

o*o 

0.1 

0.2 

0.j 

. 0.4 
. 

0.5 

0.6 

0.7 

-0.8 

0.9 
. '4 ;o 

1.1 

la.2 

. 1.3 

1.4 

'i.5 

1;6 

17 

133 

.l 4.9 

2;o 

2.j 

,34311 (+oo) 

,395Yl (+oo) 

,45665 (+oo) 

,52660 (ioo) 

,60721 (+oo) 

,7oo24 (+oo) 

~80774 (+oo) 

,93217 (+oo) 
,fo764 (+ol) 
,j244o (+ol> 
,143Yo. (+01> 
,16665 (+oI) 

,I.9325 (+ol) 

922442 (+ol) 

,26104 (+oI) 

~30418 (+ol> 

:,35514 (+ol> 

949551 (+of) 

~48722 (+ol) 

,57267 (+olj 

,67480 (+ol) 

379725. (+ol) 

,34371 (+oo) 

939591 (+oo) 

$45665 (+oo) 
,52660 (+oo) 

,60721 (+'Oo)' 

970024 (+oo) 

,8o77 (+oo) 

,93217 (+oo) 

,A0764 (+ol) 

Ji440 (+ol) 

,143vo (+ol) 

,16665 (+oI) 

919325 (+ol) 

,492oo (+oo) 
.,56581 (+oo) 
,65118 (+oo) 
,75o.12 (+oo) 
,865~7 (ioo) 
,99893 (+oo) 
,I1552 (+ol> 
,I3381 (+ol) 
,15528,(+01) 

,I8054 (+ol) 
,21o35 (+ol) 
924563 (+ol> 
,?8751 (+ol) 

!; 
4’ 

922442 (+ol) 
,26104 (+oI) 

,30418 (iol) 

835514 (+ol) 

941551 (+ol) 

,48722 (+ol> 

957267 (+ol) 

,6748o (+ol) 

333735 (+ol) 
,39686 (+ol) 
,46812 (iol) 

955371 (+ol> 

,65682 (iol) 

,78142 (+ol> 

,93247 (+ol) 

~1162 (+02) 

,79725 (‘tol) ,I3402 (+o2) 



t N-1 *5/t) q-1.5/t) uq-1.5/t) 

Lie Series Table /33/ Lie Series 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 .o 

1.1 

1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

1.8. 

1.9 

2.0 

2.1 

,ooooo (ioo) 

999750 C-01) 

,I9801 (+oo) 

,29333 (+od) 

,38432 (+oo) 

,46971 (+oo) 

,54836 (+oo) 

,61929 (+oo) 

,681.71 (ioo) 

,73502 (+oo) 

977880 (+oo) 

,81287 (+oo) 

,83721 (+oo) 

,85203 (+oo) 

85768 (+oo) 

985467 (+oo) 

84367 (+oo) 

,82541 (+oo) 

,80074 (+oo) 

,77055 (+oo) 

,73576.(+00) 

,69728 (+oo) 

,ooooo (+oo). 

,9975 (-01) 

,198ol (+oo) 

,29333 (+oo) 

,38432 (+oo) 

,46977 (+oo) 

,54836-(+oo) 

A1929 (+w) 

,68171 (+oo) 

,73502 (+oo) 

,j7880 (+oo) 

,81287 (+oo) 

s83721 (+oo) 

,85203 (+oo) 

,85768 (ioo) 

,85467 (+oo) 

,84367 (+oo) 

,825$1 (ioo) 

,a0074 (+oo) 

,77055 (+oo) 

,73576 (+oo) 

,69728 (+oo) 
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,10000' (+ol) . 

,99251 (+oo> 

,97025 (+oo) 

,93375‘ (+0(J) 

,88393 (+oo) 
,82198 (+o.o) 

,,74942.(+00) 

,667V5 boo) 

,57945 (+oo) 

948593 (+oo) . . 

,38940 (+oo). 

,29189 (+oo) . 

919535 (+oo) 

,I0159 (+oo) 

112253 (-01) 

-,71223 (-61) L 

-,14764 (+oo) 

-,21606 (ioo, 

'-,27581 (ioo) 

>-,32647 (+oo) 

-,36788 (+oo) 

-,40011 (+o,o) 



t V(-2.0/t) V(-2.0/t) V'(-2.0/t) 

Lie Seriee Table /33/ Lie Seriee 

0.0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

oy7 

0.8 

0.9 

1.0 

1.1 

1.2 

1.3 

1.4 

1*5 

1.6 

1.7 

1.8 

1 .v 

2.0 

-,45748 (+oo) ',45748 (+oo) -,65600 (+oo) 

-,51829 (ioo) -,51829 (ioo) -,55830 (+oo) 

-,56878 (ioo) -,56877 (+oo) -,44973 (+oo) 

-,60796 (+oo) -.,60796 (+oo) -,33280 (+oo) 

-,63515 (+oo) -963515 (+oo) -,21021 (+oo) 

-,64991 (+oo) -,64971 (+oo) -,84769 C-01) 

-,65210 (ioo) -,65210 (ioo) ,40696 (-01) 

-,64186 (+oo) -,64186 (+oo) 916344 (+oo) 

-,61959 (+oo) -,61959 (+oo) ,28089 (ioo) 

-,58594 (+oo) -,58594 (+oo) ,39072 (+oo) 

-,54177 (+oo) -,54177 (+oo) r49093 (+oo) 

-,48813 (ioo) -,48813 (+oo) ,57986 (+oo) 

-,42621 (+oo) -,42621 (+oo) ,65631 (+oo) 

-,35731 (+oo) -,35731 (+oo) ,71947 (+oo) 

-,28277 (+oo) -,28278 (ioo) ,768VV (+oo) 

-,20396 (+oo) -,20396 (+oo) ,80496 (+oo) 

-,12222 (+oo) -,12222 (+oo) ,82786 (ioo) 

-,38797'(-01) -,3880 (-01) ,83855 (+oo) 

,45127 (-01) ~45127 (-01) ,83822 (+oo) 

~12853 (+oo) ,12852 (ioo) ,82834 (fm) 

921053 (+oo) ,21o53 (+oo) ,81060 (ioo) 
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Appendix 

..8clvi& N-(fV933) by Meana cf Laplace Transformation by a.$HETT. 

We dart from Eq.(IV,33), having the form: 

Nt) - z"(t) + & z'(t) + x2z(t) = 0 (1) 
0 

there to> 0 i8 the point at which the solution function is expanded. 

4plylng Laplace transformation 

to thim equation, one obtains: 

(3) 

which ir solved by: 

a 

5 
(I) - etor - *in(x2+a2) 

I’ 

.-roat$ ln(r2+e2) -sZ(0)to-toZ'(0) 
. 2 2 da (4) 

x is 

taking into account that (tl=ao) = 0. 

After Borne amount of work, one obtains for (s>: 

(5) 
The rolution function Z(t) is given by: 

Xii- 

I 
estf(8)ds 

x-i- 

Making use of (34) and (35), (30) is solved by: 

z(t) - (qoe wt i t$(t sin n-t 
))z(t=o) + c-y-- - $0 > 

(6) 

)z’(t=o) (7) 
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and 
xii- 

-qt1 - & jJ'at &T f $- ~~~-I} ds CV) 
0 

Yoking use of the convolution and multiplications theorems of Laplace 

tranzformation theory, 61 and b2 can be evaluated: 

1-1 )u+l J tv ’ r"Io(n~)Io(x[t-~])d~ 

0 cl 

(10) 

(11) 

where I, iz the zero order Bessel function and I1 the first order 

Bessel function. 

These integrals are tabulated (e.g., Tables of Integral Transforms, 

Vo1.2, Erde/lyi, Yagnus and Oberhettinger, Tricomi, MC Graw-Hill 

Book Company Inc.1954, S 354). 

Remark: The recurrence formulas obtained by using Lie series (Eq.(IV,jd)) 

do .not aliow the terms occurring in bl and o2 to be ordered according 

to powers of l/to. This is advantageous for numerical calculations, 

as this factor produces a good convergence. The method of Laslace 

transformations yields bl and b2 in a closed form, ordered according 

to powers of i/to. These are two advantages compared to the represen- 

tation by means of recurrence formulas. 
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